Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesplaitsdspengine
..
additive_engine.cc
additive_engine.h
bass_drum_engine.cc
bass_drum_engine.h
chord_engine.cc
chord_engine.h
engine.h
fm_engine.cc
fm_engine.h
grain_engine.cc
grain_engine.h
hi_hat_engine.cc
hi_hat_engine.h
modal_engine.cc
modal_engine.h
noise_engine.cc
noise_engine.h
particle_engine.cc
particle_engine.h
snare_drum_engine.cc
snare_drum_engine.h
speech_engine.cc
speech_engine.h
string_engine.cc
string_engine.h
swarm_engine.cc
swarm_engine.h
virtual_analog_engine.cc
virtual_analog_engine.h
waveshaping_engine.cc
waveshaping_engine.h
wavetable_engine.cc
wavetable_engine.h
chord_engine.cc
// Copyright 2016 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Chords: wavetable and divide-down organ/string machine. #include "plaits/dsp/engine/chord_engine.h" #include <algorithm> #include "plaits/resources.h" namespace plaits { using namespace std; using namespace stmlib; const float chords[kChordNumChords][kChordNumNotes] = { { 0.00f, 0.01f, 11.99f, 12.00f }, // OCT { 0.00f, 7.01f, 7.00f, 12.00f }, // 5 { 0.00f, 5.00f, 7.00f, 12.00f }, // sus4 { 0.00f, 3.00f, 7.00f, 12.00f }, // m { 0.00f, 3.00f, 7.00f, 10.00f }, // m7 { 0.00f, 3.00f, 10.00f, 14.00f }, // m9 { 0.00f, 3.00f, 10.00f, 17.00f }, // m11 { 0.00f, 2.00f, 9.00f, 16.00f }, // 69 { 0.00f, 4.00f, 11.00f, 14.00f }, // M9 { 0.00f, 4.00f, 7.00f, 11.00f }, // M7 { 0.00f, 4.00f, 7.00f, 12.00f }, // M }; void ChordEngine::Init(BufferAllocator* allocator) { for (int i = 0; i < kChordNumVoices; ++i) { divide_down_voice_[i].Init(); wavetable_voice_[i].Init(); } chord_index_quantizer_.Init(); morph_lp_ = 0.0f; timbre_lp_ = 0.0f; ratios_ = allocator->Allocate<float>(kChordNumChords * kChordNumVoices); } void ChordEngine::Reset() { for (int i = 0; i < kChordNumChords; ++i) { for (int j = 0; j < kChordNumVoices; ++j) { ratios_[i * kChordNumVoices + j] = SemitonesToRatio(chords[i][j]); } } } const float fade_point[kChordNumVoices] = { 0.55f, 0.47f, 0.49f, 0.51f, 0.53f }; const int kRegistrationTableSize = 8; const float registrations[kRegistrationTableSize][kChordNumHarmonics * 2] = { { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f }, // Square { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }, // Saw { 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f }, // Saw + saw { 0.33f, 0.0f, 0.33f, 0.0f, 0.33f, 0.0f }, // Full saw { 0.33f, 0.0f, 0.0f, 0.33f, 0.0f, 0.33f }, // Full saw + square hybrid { 0.5f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f }, // Saw + high square harmo { 0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.5f }, // Square + high square harmo { 0.0f, 0.1f, 0.1f, 0.0f, 0.2f, 0.6f }, // // Saw+square + high harmo }; void ChordEngine::ComputeRegistration( float registration, float* amplitudes) { registration *= (kRegistrationTableSize - 1.001f); MAKE_INTEGRAL_FRACTIONAL(registration); for (int i = 0; i < kChordNumHarmonics * 2; ++i) { float a = registrations[registration_integral][i]; float b = registrations[registration_integral + 1][i]; amplitudes[i] = a + (b - a) * registration_fractional; } } int ChordEngine::ComputeChordInversion( int chord_index, float inversion, float* ratios, float* amplitudes) { const float* base_ratio = &ratios_[chord_index * kChordNumVoices]; inversion = inversion * float(kChordNumNotes * 5); MAKE_INTEGRAL_FRACTIONAL(inversion); int num_rotations = inversion_integral / kChordNumNotes; int rotated_note = inversion_integral % kChordNumNotes; const float kBaseGain = 0.25f; int mask = 0; for (int i = 0; i < kChordNumNotes; ++i) { float transposition = 0.25f * static_cast<float>( 1 << ((kChordNumNotes - 1 + inversion_integral - i) / kChordNumNotes)); int target_voice = (i - num_rotations + kChordNumVoices) % kChordNumVoices; int previous_voice = (target_voice - 1 + kChordNumVoices) % kChordNumVoices; if (i == rotated_note) { ratios[target_voice] = base_ratio[i] * transposition; ratios[previous_voice] = ratios[target_voice] * 2.0f; amplitudes[previous_voice] = kBaseGain * inversion_fractional; amplitudes[target_voice] = kBaseGain * (1.0f - inversion_fractional); } else if (i < rotated_note) { ratios[previous_voice] = base_ratio[i] * transposition; amplitudes[previous_voice] = kBaseGain; } else { ratios[target_voice] = base_ratio[i] * transposition; amplitudes[target_voice] = kBaseGain; } if (i == 0) { if (i >= rotated_note) { mask |= 1 << target_voice; } if (i <= rotated_note) { mask |= 1 << previous_voice; } } } return mask; } #define WAVE(bank, row, column) &wav_integrated_waves[(bank * 64 + row * 8 + column) * 260] const int16_t* wavetable[] = { WAVE(2, 6, 1), WAVE(2, 6, 6), WAVE(2, 6, 4), WAVE(0, 6, 0), WAVE(0, 6, 1), WAVE(0, 6, 2), WAVE(0, 6, 7), WAVE(2, 4, 7), WAVE(2, 4, 6), WAVE(2, 4, 5), WAVE(2, 4, 4), WAVE(2, 4, 3), WAVE(2, 4, 2), WAVE(2, 4, 1), WAVE(2, 4, 0), }; void ChordEngine::Render( const EngineParameters& parameters, float* out, float* aux, size_t size, bool* already_enveloped) { ONE_POLE(morph_lp_, parameters.morph, 0.1f); ONE_POLE(timbre_lp_, parameters.timbre, 0.1f); const int chord_index = chord_index_quantizer_.Process( parameters.harmonics * 1.02f, kChordNumChords); float harmonics[kChordNumHarmonics * 2 + 2]; float note_amplitudes[kChordNumVoices]; float registration = max(1.0f - morph_lp_ * 2.15f, 0.0f); ComputeRegistration(registration, harmonics); harmonics[kChordNumHarmonics * 2] = 0.0f; float ratios[kChordNumVoices]; int aux_note_mask = ComputeChordInversion( chord_index, timbre_lp_, ratios, note_amplitudes); fill(&out[0], &out[size], 0.0f); fill(&aux[0], &aux[size], 0.0f); const float f0 = NoteToFrequency(parameters.note) * 0.998f; const float waveform = max((morph_lp_ - 0.535f) * 2.15f, 0.0f); for (int note = 0; note < kChordNumVoices; ++note) { float wavetable_amount = 50.0f * (morph_lp_ - fade_point[note]); CONSTRAIN(wavetable_amount, 0.0f, 1.0f); float divide_down_amount = 1.0f - wavetable_amount; float* destination = (1 << note) & aux_note_mask ? aux : out; const float note_f0 = f0 * ratios[note]; float divide_down_gain = 4.0f - note_f0 * 32.0f; CONSTRAIN(divide_down_gain, 0.0f, 1.0f); divide_down_amount *= divide_down_gain; if (wavetable_amount) { wavetable_voice_[note].Render( note_f0 * 1.004f, note_amplitudes[note] * wavetable_amount, waveform, wavetable, destination, size); } if (divide_down_amount) { divide_down_voice_[note].Render( note_f0, harmonics, note_amplitudes[note] * divide_down_amount, destination, size); } } for (size_t i = 0; i < size; ++i) { out[i] += aux[i]; aux[i] *= 3.0f; } } } // namespace plaits
Report a bug