Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesmarblesrandom
..
discrete_distribution_quantizer.cc
discrete_distribution_quantizer.h
distributions.h
lag_processor.cc
lag_processor.h
output_channel.cc
output_channel.h
quantizer.cc
quantizer.h
random_generator.h
random_sequence.h
random_stream.h
t_generator.cc
t_generator.h
x_y_generator.cc
x_y_generator.h
t_generator.cc
// Copyright 2015 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Generator for the T outputs. #include "marbles/random/t_generator.h" #include <algorithm> #include "stmlib/dsp/units.h" #include "marbles/resources.h" namespace marbles { using namespace std; using namespace stmlib; /* static */ DividerPattern TGenerator::divider_patterns[kNumDividerPatterns] = { { { { 1, 1 }, { 1, 1 } }, 1 }, { { { 1, 1 }, { 2, 1 } }, 1 }, { { { 1, 2 }, { 1, 1 } }, 2 }, { { { 1, 1 }, { 4, 1 } }, 1 }, { { { 1, 2 }, { 2, 1 } }, 2 }, { { { 1, 1 }, { 3, 2 } }, 2 }, { { { 1, 4 }, { 4, 1 } }, 4 }, { { { 1, 4 }, { 2, 1 } }, 4 }, { { { 1, 2 }, { 3, 2 } }, 2 }, { { { 1, 1 }, { 8, 1 } }, 1 }, { { { 1, 1 }, { 3, 1 } }, 1 }, { { { 1, 3 }, { 1, 1 } }, 3 }, { { { 1, 1 }, { 5, 4 } }, 4 }, { { { 1, 2 }, { 5, 4 } }, 4 }, { { { 1, 1 }, { 6, 1 } }, 1 }, { { { 1, 3 }, { 2, 1 } }, 3 }, { { { 1, 1 }, { 16, 1 } }, 1 }, }; /* static */ DividerPattern TGenerator::fixed_divider_patterns[kNumDividerPatterns] = { { { { 8, 1 }, { 1, 8 } }, 8 }, { { { 6, 1 }, { 1, 6 } }, 6 }, { { { 4, 1 }, { 1, 4 } }, 4 }, { { { 3, 1 }, { 1, 3 } }, 3 }, { { { 2, 1 }, { 1, 2 } }, 2 }, { { { 3, 2 }, { 2, 3 } }, 6 }, { { { 4, 3 }, { 3, 4 } }, 12 }, { { { 5, 4 }, { 4, 5 } }, 20 }, { { { 1, 1 }, { 1, 1 } }, 1 }, { { { 4, 5 }, { 5, 4 } }, 20 }, { { { 3, 4 }, { 4, 3 } }, 12 }, { { { 2, 2 }, { 3, 2 } }, 6 }, { { { 1, 2 }, { 2, 1 } }, 2 }, { { { 1, 3 }, { 3, 1 } }, 3 }, { { { 1, 4 }, { 4, 1 } }, 4 }, { { { 1, 6 }, { 6, 1 } }, 6 }, { { { 1, 8 }, { 8, 1 } }, 8 }, }; /* static */ Ratio TGenerator::input_divider_ratios[kNumInputDividerRatios] = { { 1, 4 }, { 1, 3 }, { 1, 2 }, { 2, 3 }, { 1, 1 }, { 3, 2 }, { 2, 1 }, { 3, 1 }, { 4, 1 }, }; /* static */ uint8_t TGenerator::drum_patterns[kNumDrumPatterns][kDrumPatternSize] = { { 1, 0, 0, 0, 2, 0, 0, 0 }, { 0, 0, 1, 0, 2, 0, 0, 0 }, { 1, 0, 1, 0, 2, 0, 0, 0 }, { 0, 0, 1, 0, 2, 0, 0, 2 }, { 1, 0, 1, 0, 2, 0, 1, 0 }, { 0, 2, 1, 0, 2, 0, 0, 2 }, { 1, 0, 0, 0, 2, 0, 1, 0 }, { 0, 2, 1, 0, 2, 0, 1, 2 }, { 1, 0, 0, 1, 2, 0, 0, 0 }, { 0, 2, 1, 1, 2, 0, 1, 2 }, { 1, 0, 0, 1, 2, 0, 1, 0 }, { 0, 2, 1, 1, 2, 2, 1, 2 }, { 1, 0, 0, 1, 2, 0, 1, 2 }, { 0, 2, 0, 1, 2, 0, 1, 2 }, { 1, 0, 1, 1, 2, 0, 1, 2 }, { 2, 0, 1, 2, 0, 1, 2, 0 }, { 1, 2, 1, 1, 2, 0, 1, 2 }, { 2, 0, 1, 2, 0, 1, 2, 2 } }; void TGenerator::Init(RandomStream* random_stream, float sr) { one_hertz_ = 1.0f / static_cast<float>(sr); model_ = T_GENERATOR_MODEL_COMPLEMENTARY_BERNOULLI; range_ = T_GENERATOR_RANGE_1X; rate_ = 0.0f; bias_ = 0.5f; jitter_ = 0.0f; pulse_width_mean_ = 0.0f; pulse_width_std_ = 0.0f; master_phase_ = 0.0f; jitter_multiplier_ = 1.0f; phase_difference_ = 0.0f; previous_external_ramp_value_ = 0.0f; divider_pattern_length_ = 0; fill(&streak_counter_[0], &streak_counter_[kMarkovHistorySize], 0); fill(&markov_history_[0], &markov_history_[kMarkovHistorySize], 0); markov_history_ptr_ = 0; drum_pattern_step_ = 0; drum_pattern_index_ = 0; sequence_.Init(random_stream); ramp_divider_.Init(); ramp_extractor_.Init(1000.0f / sr); ramp_generator_.Init(); for (size_t i = 0; i < kNumTChannels; ++i) { slave_ramp_[i].Init(); } bias_quantizer_.Init(); rate_quantizer_.Init(); use_external_clock_ = false; } int TGenerator::GenerateComplementaryBernoulli(const RandomVector& x) { int bitmask = 0; for (size_t i = 0; i < kNumTChannels; ++i) { if ((x.variables.u[i >> 1] > bias_) ^ (i & 1)) { bitmask |= 1 << i; } } return bitmask; } int TGenerator::GenerateIndependentBernoulli(const RandomVector& x) { int bitmask = 0; for (size_t i = 0; i < kNumTChannels; ++i) { if ((x.variables.u[i] > bias_) ^ (i & 1)) { bitmask |= 1 << i; } } return bitmask; } int TGenerator::GenerateThreeStates(const RandomVector& x) { int bitmask = 0; float p_none = 0.75f - fabs(bias_ - 0.5f); float threshold = p_none + (1.0f - p_none) * (0.25f + (bias_ * 0.5f)); for (size_t i = 0; i < kNumTChannels; ++i) { float u = x.variables.u[i >> 1]; if (u > p_none && ((u > threshold) ^ (i & 1))) { bitmask |= 1 << i; } } return bitmask; } int TGenerator::GenerateDrums(const RandomVector& x) { ++drum_pattern_step_; if (drum_pattern_step_ >= kDrumPatternSize) { drum_pattern_step_ = 0; float u = x.variables.u[0] * 2.0f * fabs(bias_ - 0.5f); drum_pattern_index_ = static_cast<int32_t>(kNumDrumPatterns * u); if (bias_ <= 0.5f) { drum_pattern_index_ -= drum_pattern_index_ % 2; } } return drum_patterns[drum_pattern_index_][drum_pattern_step_]; } int TGenerator::GenerateMarkov(const RandomVector& x) { int bitmask = 0; float b = 1.5f * bias_ - 0.5f; markov_history_[markov_history_ptr_] = 0; const int32_t p = markov_history_ptr_; for (size_t i = 0; i < kNumTChannels; ++i) { int32_t mask = 1 << i; // 4 rules: // * We favor repeating what we played 8 ticks ago. // * We do not favor pulses appearing on both channels. // * We favor sparse patterns (no consecutive hits). // * We favor patterns in which one channel "echoes" what the other // channel played 4 ticks before. bool periodic = markov_history_[(p + 8) % kMarkovHistorySize] & mask; bool simultaneous = markov_history_[(p + 8) % kMarkovHistorySize] & ~mask; bool dense = markov_history_[(p + 1) % kMarkovHistorySize] & mask; bool alternate = markov_history_[(p + 4) % kMarkovHistorySize] & ~mask; float logit = -1.5f; logit += streak_counter_[i] > 24 ? 10.0f : 0.0f; logit += 8.0f * fabs(b) * (periodic ? b : -b); logit -= 2.0f * (simultaneous ? b : -b); logit -= 1.0f * (dense ? b : 0.0f); logit += 1.0f * (alternate ? b : 0.0f); CONSTRAIN(logit, -10.0f, 10.0f); float probability = lut_logit[static_cast<int>(logit * 12.8f + 128.0f)]; bool state = x.variables.u[i] < probability; if (sequence_.deja_vu() >= x.variables.p) { state = markov_history_[(p + sequence_.length()) % kMarkovHistorySize] & mask; } if (state) { bitmask |= mask; streak_counter_[i] = 0; } else { ++streak_counter_[i]; } } markov_history_[p] |= bitmask; markov_history_ptr_ = (p + kMarkovHistorySize - 1) % kMarkovHistorySize; return bitmask; } void TGenerator::ScheduleOutputPulses(const RandomVector& x, int bitmask) { for (size_t i = 0; i < kNumTChannels; ++i) { slave_ramp_[i].Init( bitmask & 1, RandomPulseWidth(i, x.variables.pulse_width[i]), 0.5f); bitmask >>= 1; } } void TGenerator::ConfigureSlaveRamps(const RandomVector& x) { switch (model_) { // Generate a bitmask that will describe which outputs are active // at this clock tick. Use this bitmask to actually schedule pulses on the // outputs. case T_GENERATOR_MODEL_COMPLEMENTARY_BERNOULLI: ScheduleOutputPulses(x, GenerateComplementaryBernoulli(x)); break; case T_GENERATOR_MODEL_INDEPENDENT_BERNOULLI: ScheduleOutputPulses(x, GenerateIndependentBernoulli(x)); break; case T_GENERATOR_MODEL_THREE_STATES: ScheduleOutputPulses(x, GenerateThreeStates(x)); break; case T_GENERATOR_MODEL_DRUMS: ScheduleOutputPulses(x, GenerateDrums(x)); break; case T_GENERATOR_MODEL_MARKOV: ScheduleOutputPulses(x, GenerateMarkov(x)); break; case T_GENERATOR_MODEL_CLUSTERS: case T_GENERATOR_MODEL_DIVIDER: --divider_pattern_length_; if (divider_pattern_length_ <= 0) { DividerPattern pattern; if (model_ == T_GENERATOR_MODEL_DIVIDER) { pattern = bias_quantizer_.Lookup( fixed_divider_patterns, bias_, kNumDividerPatterns); } else { float strength = fabs(bias_ - 0.5f) * 2.0f; float u = x.variables.u[0]; u *= (u + strength * strength * (1.0f - u)); u *= strength; pattern = divider_patterns[static_cast<size_t>( u * kNumDividerPatterns)]; if (bias_ < 0.5f) { for (size_t i = 0; i < kNumTChannels / 2; ++i) { swap(pattern.ratios[i], pattern.ratios[kNumTChannels - 1 - i]); } } } for (size_t i = 0; i < kNumTChannels; ++i) { slave_ramp_[i].Init( pattern.length, pattern.ratios[i], RandomPulseWidth(i, x.variables.pulse_width[i])); } divider_pattern_length_ = pattern.length; } break; } } void TGenerator::Process( bool use_external_clock, const GateFlags* external_clock, Ramps ramps, bool* gate, size_t size) { float internal_frequency; if (use_external_clock) { if (!use_external_clock_) { ramp_extractor_.Reset(); } Ratio ratio = rate_quantizer_.Lookup( input_divider_ratios, 1.05f * rate_ / 96.0f + 0.5f, kNumInputDividerRatios); if (range_ == T_GENERATOR_RANGE_0_25X) { ratio.q *= 4; } else if (range_ == T_GENERATOR_RANGE_4X) { ratio.p *= 4; } ratio.Simplify<2>(); ramp_extractor_.Process(ratio, true, external_clock, ramps.external, size); internal_frequency = 0.0f; } else { float rate = 2.0f; if (range_ == T_GENERATOR_RANGE_4X) { rate = 8.0f; } else if (range_ == T_GENERATOR_RANGE_0_25X) { rate = 0.5f; } internal_frequency = rate * one_hertz_ * SemitonesToRatio(rate_); } use_external_clock_ = use_external_clock; while (size--) { float frequency = use_external_clock ? *ramps.external - previous_external_ramp_value_ : internal_frequency; frequency += frequency < 0.0f ? 1.0f : 0.0f; float jittery_frequency = frequency * jitter_multiplier_; master_phase_ += jittery_frequency; phase_difference_ += frequency - jittery_frequency; if (master_phase_ > 1.0f) { master_phase_ -= 1.0f; RandomVector random_vector; sequence_.NextVector( random_vector.x, sizeof(random_vector.x) / sizeof(float)); float jitter_amount = jitter_ * jitter_ * jitter_ * jitter_ * 36.0f; float x = FastBetaDistributionSample(random_vector.variables.jitter); float multiplier = SemitonesToRatio((x * 2.0f - 1.0f) * jitter_amount); // This step is crucial in making sure that the jittered clock does not // deviate too much from the master clock. The larger the phase difference // difference between the two, the more likely the jittery clock will // speed up or down to catch up with the straight clock. multiplier *= phase_difference_ > 0.0f ? 1.0f + phase_difference_ : 1.0f / (1.0f - phase_difference_); jitter_multiplier_ = multiplier; ConfigureSlaveRamps(random_vector); } if (internal_frequency) { *ramps.external = master_phase_; } previous_external_ramp_value_ = *ramps.external; ramps.external++; *ramps.master++ = master_phase_; for (size_t j = 0; j < kNumTChannels; ++j) { slave_ramp_[j].Process( frequency * jitter_multiplier_, ramps.slave[j], gate); ramps.slave[j]++; gate++; } } } } // namespace marbles
Report a bug