Files

copied
Last update 6 years 1 month by Olivier Gillet
Filesmarblesrandom
..
discrete_distribution_quantizer.cc
discrete_distribution_quantizer.h
distributions.h
lag_processor.cc
lag_processor.h
output_channel.cc
output_channel.h
quantizer.cc
quantizer.h
random_generator.h
random_sequence.h
random_stream.h
t_generator.cc
t_generator.h
x_y_generator.cc
x_y_generator.h
distributions.h
// Copyright 2015 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Generates samples from various kinds of random distributions. #ifndef MARBLES_RANDOM_DISTRIBUTIONS_H_ #define MARBLES_RANDOM_DISTRIBUTIONS_H_ #include "stmlib/stmlib.h" #include <algorithm> #include "stmlib/dsp/dsp.h" #include "marbles/resources.h" namespace marbles { const size_t kNumBiasValues = 5; const size_t kNumRangeValues = 9; const float kIcdfTableSize = 128.0f; // Generates samples from beta distribution, from uniformly distributed samples. // For higher throughput, uses pre-computed tables of inverse cdfs. inline float BetaDistributionSample(float uniform, float spread, float bias) { // Tables are pre-computed only for bias <= 0.5. For values above 0.5, // symmetry is used. bool flip_result = bias > 0.5f; if (flip_result) { uniform = 1.0f - uniform; bias = 1.0f - bias; } bias *= (static_cast<float>(kNumBiasValues) - 1.0f) * 2.0f; spread *= (static_cast<float>(kNumRangeValues) - 1.0f); MAKE_INTEGRAL_FRACTIONAL(bias); MAKE_INTEGRAL_FRACTIONAL(spread); size_t cell = bias_integral * (kNumRangeValues + 1) + spread_integral; // Lower 5% and 95% percentiles use a different table with higher resolution. size_t offset = 0; if (uniform <= 0.05f) { offset = kIcdfTableSize + 1; uniform *= 20.0f; } else if (uniform >= 0.95f) { offset = 2 * (kIcdfTableSize + 1); uniform = (uniform - 0.95f) * 20.0f; } float x1y1 = stmlib::Interpolate( distributions_table[cell] + offset, uniform, kIcdfTableSize); float x2y1 = stmlib::Interpolate( distributions_table[cell + 1] + offset, uniform, kIcdfTableSize); float x1y2 = stmlib::Interpolate( distributions_table[cell + kNumRangeValues + 1] + offset, uniform, kIcdfTableSize); float x2y2 = stmlib::Interpolate( distributions_table[cell + kNumRangeValues + 2] + offset, uniform, kIcdfTableSize); float y1 = x1y1 + (x2y1 - x1y1) * spread_fractional; float y2 = x1y2 + (x2y2 - x1y2) * spread_fractional; float y = y1 + (y2 - y1) * bias_fractional; if (flip_result) { y = 1.0f - y; } return y; } // Pre-computed beta(3, 3) with a fatter tail. inline float FastBetaDistributionSample(float uniform) { return stmlib::Interpolate(dist_icdf_4_3, uniform, kIcdfTableSize); } // Draws samples from a discrete distribution. Used for the quantizer. // Example: // * 1 with probability 0.2 // * 20 with probability 0.7 // * 666 with probability 0.1 // // DiscreteDistribution d; // d.Init(); // d.AddToken(1, 0.2); // d.AddToken(20, 0.7); // d.AddToken(666, 0.1); // d.NoMoreTokens(); // Result r = d.Sample(u); // cout << r.token_id; // // Weights do not have to add to 1.0f - the class handles normalization. // template<size_t size> class DiscreteDistribution { public: DiscreteDistribution() { } ~DiscreteDistribution() { } void Init() { sum_ = 0.0f; num_tokens_ = 1; cdf_[0] = 0.0f; token_ids_[0] = 0; } void AddToken(int token_id, float weight) { if (weight <= 0.0f) { return; } sum_ += weight; token_ids_[num_tokens_] = token_id; cdf_[num_tokens_] = sum_; ++num_tokens_; } void NoMoreTokens() { token_ids_[num_tokens_] = token_ids_[num_tokens_ - 1]; cdf_[num_tokens_] = sum_ + 1.0f; } struct Result { int token_id; float fraction; float start; float width; }; inline Result Sample(float u) const { Result r; u *= sum_; int n = std::upper_bound(&cdf_[1], &cdf_[num_tokens_ + 1], u) - &cdf_[0]; float norm = 1.0f / sum_; r.token_id = token_ids_[n]; r.width = (cdf_[n] - cdf_[n - 1]) * norm; r.start = (cdf_[n - 1]) * norm; r.fraction = (u - cdf_[n - 1]) / (cdf_[n] - cdf_[n - 1]); return r; } float sum_; float cdf_[size + 2]; int token_ids_[size + 2]; int num_tokens_; DISALLOW_COPY_AND_ASSIGN(DiscreteDistribution); }; } // namespace marbles #endif // MARBLES_RANDOM_DISTRIBUTIONS_H_
Report a bug