Files

Power Supply.md
  • li-ion batteries with bms require external power supply (e.g. the solar panel) use source follower as in <![CDATA[]]>https://github.com/LibreSolar/mppt-2420-hc/blob/main/build/mppt-2420-hc_...<![CDATA[]]> to limit supply voltage (from 100V solar)
  • use lower voltage buck converter for 12V/3.3V supply
  • protection against voltage transient
  • when battery voltage (up to 60V) is available, switch
  • esp32s3 has 300mA peak current consumption
  • expect solar input (80V, or more?) at battery terminal
    • another charger connected in parallel might be faulty passing through solar voltage (happended to me with Victron) and when battery is disconnected (e.g. BMS cut-off)

3.3C

ESP32-S3 WROOM 802.11g, 54 Mbps, @18 dBm peak 297 mA <![CDATA[]]>https://www.espressif.com/sites/default/files/documentation/esp32-s3-wro...<![CDATA[]]>

AVG with wifi 120 mA

Suitable Surge Supression

Clamping

  • TVS (or ZVS)
    • combined with PTC, Coil, Fuse (see Renesas Book)
  • MOV
  • MOSFET
    • ICs exist (LTC4364)

Source Follower (common-drain)

  • like in <![CDATA[]]>https://github.com/LibreSolar/mppt-2420-hc/blob/main/build/mppt-2420-hc_...<![CDATA[]]>
    • as soon as output voltage is available (LV≤60V) the circuit turns-off the source follower
    • uses a charge pump powered by LV to generate voltage above supply input to switch on a transistor (T2), which turns-off the source follower MOSFET Q4
    • it only protects from surge voltages at the solar input
  • simple voltage regulator
  • protects against surge voltages, even longer times
  • can implement soft-start
  • min voltage drop: Vgs_th. choose a mosfet with low Vgs_th!

OV Protection

  • surge voltage (voltage spike, voltage transient)

  • ZVS + Fuse

Fuses 0679L0375-05

xl7005 LV5144RGYR

<![CDATA[]]>https://www.digikey.de/short/83bbnbjn<![CDATA[]]> (buck 75V)

Vin(max) Iout(max) Iq eff (80Vin, 150mA) eff in:75V out:12V,100mA eff 12Vin/3.3V,100mA $px(100)
TPP00032 100 300 100μA 72% 0.22 (out of stock) low stock, sync, FET: 0.75 Ω and 0.4 Ω , light-load operation
TPP00031-ES1R 100 300 mA 56% 0.22 sync, FET: 0.75Ω and 0.4 Ω <![CDATA[]]>PDF<![CDATA[]]>
LMR38010FDDAR 80 40µ 1.81
LMR38020 100 prog fsw, SPREAD SPECTRUM (EMI)
RAA2118034GP3#JA0 var freq,DCM 80 (84) 300mA (3.3V fixed) 70% (3.3Vout) 0.87 <![CDATA[]]>PDF<![CDATA[]]>
TI LV2862XLVDDCR 60 (65) 600 83% 0.51 0.7mhz
SCT2A22STER 100 70% Forced PWM
SCT2600 80 pulse skipping (light-load)
SCT2A12 100 49uA 85%
TI LM5009A 95 300 78% (10Vout) 1.33 <![CDATA[]]>PDF<![CDATA[]]>
TI LM5169/8 120 650/300 77% 1.33 Sync, Fly-Buck™ <![CDATA[]]>PDF<![CDATA[]]>
XL7005 70 500 64% (15Vout) <![CDATA[]]>PDF<![CDATA[]]>
MP4541 80 800 ~75% (10Vout) 1.20 <![CDATA[]]>PDF<![CDATA[]]>
LM5164 100 1000 84 83% 2.35 sync, FET: 0.725Ω and 0.34Ω, <![CDATA[]]>PDF<![CDATA[]]>
LM5163DDAR 100 500 82 83% (60Vin) 1.61 sync, FET: 0.725Ω and 0.34Ω, <![CDATA[]]>PDF<![CDATA[]]>
XL7015 100 300 70 <![CDATA[]]>PDF<![CDATA[]]>
XL7005 80 60 <![CDATA[]]>PDF<![CDATA[]]>
TX4139 75%
LM5116 100 3.80
LM5007 80 700 79% 2.11
LMR16006X 60 600 1.96 LibreSolar/mppt-2420-hc
LMR51606XDBVR 65 600 0.58

Good drop-in for 3.3 and 12V rails, 80,100V:

PFM: better light-load eff (pulse skipping) FPWM: lower ripple, tighter regulation (forced pwm)

MP4541

12 -> 3.3V: @ 100 mA <![CDATA[]]>https://www.digikey.de/short/bpfjh3m8<![CDATA[]]>

AP63203WU-7: 88%, 22µA Iq, 2A max, 0.5 € (100x) TPS62172DSGT: 84% TPS560430: 84% TPS51383: 92 %, 80-μA Iq, 8A max, 0.53€ (100x) RAA2118034GP3#JA0

LM5146 (external fets)

Diodes

  • DFLS1100

3.3V ZVC protection

ESP32 has internal ESD protection. we need ZVS for lightning and voltage transient protection. usually these diodes have a peak power of 600 W.

Vrwm Vbr Vcl Ippm
Littlefuse SMF3.3 .4€ 3.3 3.4 6.8 30A 200W
Vishay SMBJ3V3-E3/52 .4€ 3.3 4.1 10.3 200A 600W
ST SM2T3V3A .6€ 3.3 3.6 6.8 30A
ST SMLVT3V3 .8€ 3.3 4.1 10.3 200A 600W
NXP PTVS3V3S1UR,115 .4€ 3.3 5.2 8 44A 350W
  • Vishay SMBJ3V3-E3/52 (.4€)

Surge Protect: <![CDATA[]]>https://ir.canterbury.ac.nz/items/e7c8c3da-042c-4d4a-9b7b-2b93970b0d82<![CDATA[]]>

Boost 3.3 -> 12V .

  • one FET needs ~< 50mW gate-drive power
  • 4 FETs at 10V need 20 mA @ 40 kHz
  • 20mA@12V = 240mW, 20mA@80V = 1.6W
  • AP3012KTR-G1 @ 20mA has 75% eff.
    • $.24 + 10uH(.4$) + D=1N5819 (C: X5R or X7R Dielectric, L: SUMIDA CDTH3D14/HPNP-100NC or Equivalent)
    • ⇒ for <$1 a 75% eff. solution (better than using another 100v→10V buck)
    • consider using using a 100V diode maybe after C_out to protect any HV
Report a bug