Files
-
hardware / bubblegum / bubblegum.brd
-
hardware / bubblegum / bubblegum.sch
-
hardware / hackrf-one / baseband.kicad_sch
-
hardware / hackrf-one / clock.kicad_sch
-
hardware / hackrf-one / frontend.kicad_sch
-
hardware / hackrf-one / hackrf-one.kicad_pcb
-
hardware / hackrf-one / hackrf-one.kicad_sch
-
hardware / hackrf-one / mcu.kicad_sch
-
hardware / jawbreaker / baseband.sch
-
hardware / jawbreaker / frontend.sch
-
hardware / jawbreaker / jawbreaker.brd
-
hardware / jawbreaker / jawbreaker.sch
-
hardware / jawbreaker / mcu.sch
-
hardware / jellybean / jellybean.brd
-
hardware / jellybean / jellybean.sch
-
hardware / lemondrop / lemondrop.brd
-
hardware / lemondrop / lemondrop.sch
-
hardware / licorice / licorice.brd
-
hardware / licorice / licorice.sch
-
hardware / LNA915 / LNA915.kicad_pcb
-
hardware / LNA915 / LNA915.sch
-
hardware / lollipop / lollipop.brd
-
hardware / lollipop / lollipop.sch
-
hardware / marzipan / baseband.sch
-
hardware / marzipan / frontend.sch
-
hardware / marzipan / marzipan.kicad_pcb
-
hardware / marzipan / marzipan.sch
-
hardware / marzipan / mcu.sch
-
hardware / neapolitan / baseband.sch
-
hardware / neapolitan / frontend.sch
-
hardware / neapolitan / mcu.sch
-
hardware / neapolitan / neapolitan.kicad_pcb
-
hardware / neapolitan / neapolitan.sch
-
hardware / operacake / operacake.kicad_pcb
-
hardware / operacake / operacake.sch
Last update 2 years 1 month
by
Gianpaolo Macario
Fileshosthackrf-toolssrc | |
---|---|
.. | |
CMakeLists.txt | |
hackrf_clock.c | |
hackrf_cpldjtag.c | |
hackrf_debug.c | |
hackrf_info.c | |
hackrf_operacake.c | |
hackrf_spiflash.c | |
hackrf_sweep.c | |
hackrf_transfer.c |
hackrf_transfer.c/* * Copyright 2012-2022 Great Scott Gadgets <info@greatscottgadgets.com> * Copyright 2012 Jared Boone <jared@sharebrained.com> * Copyright 2013-2014 Benjamin Vernoux <titanmkd@gmail.com> * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #define _FILE_OFFSET_BITS 64 #include <hackrf.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <getopt.h> #include <time.h> #include <math.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <errno.h> #include <inttypes.h> #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #ifdef _WIN32 #include <windows.h> #ifdef _MSC_VER #ifdef _WIN64 typedef int64_t ssize_t; #else typedef int32_t ssize_t; #endif #define strtoull _strtoui64 #define snprintf _snprintf int gettimeofday(struct timeval* tv, void* ignored) { FILETIME ft; unsigned __int64 tmp = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmp |= ft.dwHighDateTime; tmp <<= 32; tmp |= ft.dwLowDateTime; tmp /= 10; tmp -= 11644473600000000Ui64; tv->tv_sec = (long) (tmp / 1000000UL); tv->tv_usec = (long) (tmp % 1000000UL); } return 0; } #endif #endif #if defined(__GNUC__) #include <unistd.h> #include <sys/time.h> #endif #include <signal.h> #define FD_BUFFER_SIZE (8 * 1024) #define FREQ_ONE_MHZ (1000000ll) #define DEFAULT_FREQ_HZ (900000000ll) /* 900MHz */ #define FREQ_ABS_MIN_HZ (0ull) /* 0 Hz */ #define FREQ_MIN_HZ (1000000ll) /* 1MHz */ #define FREQ_MAX_HZ (6000000000ll) /* 6000MHz */ #define FREQ_ABS_MAX_HZ (7250000000ll) /* 7250MHz */ #define IF_ABS_MIN_HZ (2000000000ll) #define IF_MIN_HZ (2170000000ll) #define IF_MAX_HZ (2740000000ll) #define IF_ABS_MAX_HZ (3000000000ll) #define LO_MIN_HZ (84375000ll) #define LO_MAX_HZ (5400000000ll) #define DEFAULT_LO_HZ (1000000000ll) #define SAMPLE_RATE_MIN_HZ (2000000) /* 2MHz min sample rate */ #define SAMPLE_RATE_MAX_HZ (20000000) /* 20MHz max sample rate */ #define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */ #define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */ #define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */ #define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */ typedef enum { TRANSCEIVER_MODE_OFF = 0, TRANSCEIVER_MODE_RX = 1, TRANSCEIVER_MODE_TX = 2, TRANSCEIVER_MODE_SS = 3, } transceiver_mode_t; typedef enum { HW_SYNC_MODE_OFF = 0, HW_SYNC_MODE_ON = 1, } hw_sync_mode_t; typedef struct { uint64_t m0_total; uint64_t m4_total; } stats_t; /* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */ typedef struct { char groupID[4]; /* 'RIFF' */ uint32_t size; /* File size + 8bytes */ char riffType[4]; /* 'WAVE'*/ } t_WAVRIFF_hdr; #define FormatID \ "fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */ typedef struct { char chunkID[4]; /* 'fmt ' */ uint32_t chunkSize; /* 16 fixed */ uint16_t wFormatTag; /* 1 fixed */ uint16_t wChannels; /* 2 fixed */ uint32_t dwSamplesPerSec; /* Freq Hz sampling */ uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */ uint16_t wBlockAlign; /* 2 fixed */ uint16_t wBitsPerSample; /* 8 fixed */ } t_FormatChunk; typedef struct { char chunkID[4]; /* 'data' */ uint32_t chunkSize; /* Size of data in bytes */ /* Samples I(8bits) then Q(8bits), I, Q ... */ } t_DataChunk; typedef struct { t_WAVRIFF_hdr hdr; t_FormatChunk fmt_chunk; t_DataChunk data_chunk; } t_wav_file_hdr; t_wav_file_hdr wave_file_hdr = { /* t_WAVRIFF_hdr */ {/* groupID */ {'R', 'I', 'F', 'F'}, 0, /* size to update later */ {'W', 'A', 'V', 'E'}}, /* t_FormatChunk */ { /* char chunkID[4]; */ {'f', 'm', 't', ' '}, 16, /* uint32_t chunkSize; */ 1, /* uint16_t wFormatTag; 1 fixed */ 2, /* uint16_t wChannels; 2 fixed */ 0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */ 0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */ 2, /* uint16_t wBlockAlign; 2 fixed */ 8, /* uint16_t wBitsPerSample; 8 fixed */ }, /* t_DataChunk */ { /* char chunkID[4]; */ {'d', 'a', 't', 'a'}, 0, /* uint32_t chunkSize; to update later */ }}; static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX; #define U64TOA_MAX_DIGIT (31) typedef struct { char data[U64TOA_MAX_DIGIT + 1]; } t_u64toa; t_u64toa ascii_u64_data[4]; static float TimevalDiff(const struct timeval* a, const struct timeval* b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u64(char* s, uint64_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t u64_value; if (strlen(s) > 2) { if (s[0] == '0') { if ((s[1] == 'x') || (s[1] == 'X')) { base = 16; s += 2; } else if ((s[1] == 'b') || (s[1] == 'B')) { base = 2; s += 2; } } } s_end = s; u64_value = strtoull(s, &s_end, base); if ((s != s_end) && (*s_end == 0)) { *value = u64_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t ulong_value; if (strlen(s) > 2) { if (s[0] == '0') { if ((s[1] == 'x') || (s[1] == 'X')) { base = 16; s += 2; } else if ((s[1] == 'b') || (s[1] == 'B')) { base = 2; s += 2; } } } s_end = s; ulong_value = strtoul(s, &s_end, base); if ((s != s_end) && (*s_end == 0)) { *value = (uint32_t) ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } /* Parse frequencies as doubles to take advantage of notation parsing */ int parse_frequency_i64(char* optarg, char* endptr, int64_t* value) { *value = (int64_t) strtod(optarg, &endptr); if (optarg == endptr) { return HACKRF_ERROR_INVALID_PARAM; } return HACKRF_SUCCESS; } int parse_frequency_u32(char* optarg, char* endptr, uint32_t* value) { *value = (uint32_t) strtod(optarg, &endptr); if (optarg == endptr) { return HACKRF_ERROR_INVALID_PARAM; } return HACKRF_SUCCESS; } static char* stringrev(char* str) { char *p1, *p2; if (!str || !*str) return str; for (p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2) { *p1 ^= *p2; *p2 ^= *p1; *p1 ^= *p2; } return str; } char* u64toa(uint64_t val, t_u64toa* str) { #define BASE (10ull) /* Base10 by default */ uint64_t sum; int pos; int digit; int max_len; char* res; sum = val; max_len = U64TOA_MAX_DIGIT; pos = 0; do { digit = (sum % BASE); str->data[pos] = digit + '0'; pos++; sum /= BASE; } while ((sum > 0) && (pos < max_len)); if ((pos == max_len) && (sum > 0)) return NULL; str->data[pos] = '\0'; res = stringrev(str->data); return res; } static volatile bool do_exit = false; static volatile bool interrupted = false; static volatile bool tx_complete = false; static volatile bool flush_complete = false; #ifdef _WIN32 static HANDLE interrupt_handle; #endif FILE* file = NULL; volatile uint32_t byte_count = 0; bool signalsource = false; uint32_t amplitude = 0; bool hw_sync = false; bool receive = false; bool receive_wav = false; uint64_t stream_size = 0; uint32_t stream_head = 0; uint32_t stream_tail = 0; uint32_t stream_drop = 0; uint8_t* stream_buf = NULL; /* sum of power of all samples, reset on the periodic report */ volatile uint64_t stream_power = 0; bool transmit = false; struct timeval time_start; struct timeval t_start; bool automatic_tuning = false; int64_t freq_hz; bool if_freq = false; int64_t if_freq_hz; bool lo_freq = false; int64_t lo_freq_hz = DEFAULT_LO_HZ; bool image_reject = false; uint32_t image_reject_selection; bool amp = false; uint32_t amp_enable; bool antenna = false; uint32_t antenna_enable; bool sample_rate = false; uint32_t sample_rate_hz; bool force_ranges = false; bool limit_num_samples = false; uint64_t samples_to_xfer = 0; size_t bytes_to_xfer = 0; bool display_stats = false; bool baseband_filter_bw = false; uint32_t baseband_filter_bw_hz = 0; bool repeat = false; bool crystal_correct = false; uint32_t crystal_correct_ppm; int requested_mode_count = 0; void stop_main_loop(void) { do_exit = true; #ifdef _WIN32 SetEvent(interrupt_handle); #else kill(getpid(), SIGALRM); #endif } int rx_callback(hackrf_transfer* transfer) { size_t bytes_to_write; size_t bytes_written; unsigned int i; if (file == NULL) { stop_main_loop(); return -1; } /* Accumulate power (magnitude squared). */ bytes_to_write = transfer->valid_length; uint64_t sum = 0; for (i = 0; i < bytes_to_write; i++) { int8_t value = transfer->buffer[i]; sum += value * value; } /* Update both running totals at approximately the same time. */ byte_count += transfer->valid_length; stream_power += sum; if (limit_num_samples) { if (bytes_to_write >= bytes_to_xfer) { bytes_to_write = bytes_to_xfer; } bytes_to_xfer -= bytes_to_write; } if (receive_wav) { /* convert .wav contents from signed to unsigned */ for (i = 0; i < bytes_to_write; i++) { transfer->buffer[i] ^= (uint8_t) 0x80; } } if (stream_size == 0) { bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, file); if ((bytes_written != bytes_to_write) || (limit_num_samples && (bytes_to_xfer == 0))) { stop_main_loop(); return -1; } else { return 0; } } #ifndef _WIN32 if ((stream_size - 1 + stream_head - stream_tail) % stream_size < bytes_to_write) { stream_drop++; } else { if (stream_tail + bytes_to_write <= stream_size) { memcpy(stream_buf + stream_tail, transfer->buffer, bytes_to_write); } else { memcpy(stream_buf + stream_tail, transfer->buffer, (stream_size - stream_tail)); memcpy(stream_buf, transfer->buffer + (stream_size - stream_tail), bytes_to_write - (stream_size - stream_tail)); }; __atomic_store_n( &stream_tail, (stream_tail + bytes_to_write) % stream_size, __ATOMIC_RELEASE); } #endif return 0; } int tx_callback(hackrf_transfer* transfer) { size_t bytes_to_read; size_t bytes_read; unsigned int i; /* Check we have a valid source of samples. */ if (file == NULL && transceiver_mode != TRANSCEIVER_MODE_SS) { stop_main_loop(); return -1; } /* If the last data was already buffered, stop. */ if (tx_complete) { return -1; } /* Determine how many bytes we need to put in the buffer. */ bytes_to_read = transfer->buffer_length; if (limit_num_samples) { if (bytes_to_read >= bytes_to_xfer) { bytes_to_read = bytes_to_xfer; } bytes_to_xfer -= bytes_to_read; } /* Fill the buffer. */ if (file == NULL) { /* Transmit continuous wave with specific amplitude */ for (i = 0; i < bytes_to_read; i += 2) { transfer->buffer[i] = amplitude; transfer->buffer[i + 1] = 0; } bytes_read = bytes_to_read; } else { /* Read samples from file. */ bytes_read = fread(transfer->buffer, 1, bytes_to_read, file); /* If no more bytes, error or file empty, terminate. */ if (bytes_read == 0) { /* Report any error. */ if (ferror(file)) { fprintf(stderr, "Could not read input file.\n"); stop_main_loop(); return -1; } if (ftell(file) < 1) { stop_main_loop(); return -1; } } } /* Now set the valid length to the bytes we put in the buffer. */ transfer->valid_length = bytes_read; /* If the sample limit has been reached, this is the last data. */ if (limit_num_samples && (bytes_to_xfer == 0)) { tx_complete = true; return 0; } /* If we filled the number of bytes needed, return normally. */ if (bytes_read == bytes_to_read) { return 0; } /* Otherwise, the file ran short. If not repeating, this is the last data. */ if ((!repeat) || (ftell(file) < 1)) { tx_complete = true; return 0; } /* If we get to here, we need to repeat the file until we fill the buffer. */ while (bytes_read < bytes_to_read) { size_t extra_bytes_read; /* Rewind and read more samples. */ rewind(file); extra_bytes_read = fread(transfer->buffer + bytes_read, 1, bytes_to_read - bytes_read, file); /* If no more bytes, error or file empty, use what we have. */ if (extra_bytes_read == 0) { /* Report any error. */ if (ferror(file)) { fprintf(stderr, "Could not read input file.\n"); tx_complete = true; return 0; } if (ftell(file) < 1) { tx_complete = true; return 0; } } bytes_read += extra_bytes_read; transfer->valid_length += extra_bytes_read; } /* Then return normally. */ return 0; } static void tx_complete_callback(hackrf_transfer* transfer, int success) { // If a transfer failed to complete, stop the main loop. if (!success) { stop_main_loop(); return; } /* Accumulate power (magnitude squared). */ uint32_t i; uint64_t sum = 0; for (i = 0; i < transfer->valid_length; i++) { int8_t value = transfer->buffer[i]; sum += value * value; } /* Update both running totals at approximately the same time. */ byte_count += transfer->valid_length; stream_power += sum; } static void flush_callback(void* flush_ctx, int success) { if (success) { flush_complete = true; } stop_main_loop(); } static int update_stats(hackrf_device* device, hackrf_m0_state* state, stats_t* stats) { int result = hackrf_get_m0_state(device, state); if (result == HACKRF_SUCCESS) { /* * Update 64-bit running totals, to handle wrapping of the 32-bit fields * for M0 and M4 byte counts. * * The logic for handling wrapping works as follows: * * If a 32-bit count read from the HackRF is less than the lower 32 bits of * the previous 64-bit running total, this indicates the 32-bit counter has * wrapped since it was last read. Add 2^32 to the 64-bit total to account * for this. * * Then, having accounted for the possible wrap, mask off the bottom 32 * bits of the 64-bit total, and replace them with the new 32-bit count. * * This should result in correct results as long as the 32-bit counter * cannot wrap more than once between reads. * * We read the M0 state every second, and the counters will wrap every 107 * seconds at 20Msps, so this should be a safe assumption. */ if (state->m0_count < (stats->m0_total & 0xFFFFFFFF)) stats->m0_total += 0x100000000; if (state->m4_count < (stats->m4_total & 0xFFFFFFFF)) stats->m4_total += 0x100000000; stats->m0_total = (stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count; stats->m4_total = (stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count; } return result; } static void usage() { printf("Usage:\n"); printf("\t-h # this help\n"); printf("\t[-d serial_number] # Serial number of desired HackRF.\n"); printf("\t-r <filename> # Receive data into file (use '-' for stdout).\n"); printf("\t-t <filename> # Transmit data from file (use '-' for stdin).\n"); printf("\t-w # Receive data into file with WAV header and automatic name.\n"); printf("\t # This is for SDR# compatibility and may not work with other software.\n"); printf("\t[-f freq_hz] # Frequency in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n", u64toa((FREQ_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]), u64toa((FREQ_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]), u64toa((FREQ_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]), u64toa((FREQ_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3])); printf("\t[-i if_freq_hz] # Intermediate Frequency (IF) in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n", u64toa((IF_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]), u64toa((IF_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]), u64toa((IF_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]), u64toa((IF_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3])); printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%sMHz to %sMHz].\n", u64toa((LO_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]), u64toa((LO_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1])); printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n"); printf("\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n"); printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n"); printf("\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n"); printf("\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n"); printf("\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n"); printf("\t[-s sample_rate_hz] # Sample rate in Hz (%s-%sMHz supported, default %sMHz).\n", u64toa((SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]), u64toa((SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]), u64toa((DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2])); printf("\t[-F force] # Force use of parameters outside supported ranges.\n"); printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n"); #ifndef _WIN32 /* The required atomic load/store functions aren't available when using C with MSVC */ printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n"); #endif printf("\t[-B] # Print buffer statistics during transfer\n"); printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n"); printf("\t[-R] # Repeat TX mode (default is off) \n"); printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n"); printf("\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n"); printf("\t[-C ppm] # Set Internal crystal clock error in ppm.\n"); printf("\t[-H] # Synchronize RX/TX to external trigger input.\n"); } static hackrf_device* device = NULL; #ifdef _WIN32 BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { interrupted = true; fprintf(stderr, "Caught signal %d\n", signum); stop_main_loop(); return TRUE; } return FALSE; } #else void sigint_callback_handler(int signum) { interrupted = true; fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; } #endif #ifndef _WIN32 void sigalrm_callback_handler(int signum) { } #endif #define PATH_FILE_MAX_LEN (FILENAME_MAX) #define DATE_TIME_MAX_LEN (32) int main(int argc, char** argv) { int opt; char path_file[PATH_FILE_MAX_LEN]; char date_time[DATE_TIME_MAX_LEN]; const char* path = NULL; const char* serial_number = NULL; char* endptr = NULL; int result; time_t rawtime; struct tm* timeinfo; long int file_pos; int exit_code = EXIT_SUCCESS; struct timeval t_end; float time_diff; unsigned int lna_gain = 8, vga_gain = 20, txvga_gain = 0; hackrf_m0_state state; stats_t stats = {0, 0}; while ((opt = getopt(argc, argv, "Hwr:t:f:i:o:m:a:p:s:Fn:b:l:g:x:c:d:C:RS:Bh?")) != EOF) { result = HACKRF_SUCCESS; switch (opt) { case 'H': hw_sync = true; break; case 'w': receive_wav = true; requested_mode_count++; break; case 'r': receive = true; requested_mode_count++; path = optarg; break; case 't': transmit = true; requested_mode_count++; path = optarg; break; case 'd': serial_number = optarg; break; case 'S': result = parse_u64(optarg, &stream_size); stream_buf = calloc(1, stream_size); break; case 'f': result = parse_frequency_i64(optarg, endptr, &freq_hz); automatic_tuning = true; break; case 'i': result = parse_frequency_i64(optarg, endptr, &if_freq_hz); if_freq = true; break; case 'o': result = parse_frequency_i64(optarg, endptr, &lo_freq_hz); lo_freq = true; break; case 'm': image_reject = true; result = parse_u32(optarg, &image_reject_selection); break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'p': antenna = true; result = parse_u32(optarg, &antenna_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'g': result = parse_u32(optarg, &vga_gain); break; case 'x': result = parse_u32(optarg, &txvga_gain); break; case 's': result = parse_frequency_u32(optarg, endptr, &sample_rate_hz); sample_rate = true; break; case 'F': force_ranges = true; break; case 'n': limit_num_samples = true; result = parse_u64(optarg, &samples_to_xfer); bytes_to_xfer = samples_to_xfer * 2ull; break; case 'B': display_stats = true; break; case 'b': result = parse_frequency_u32( optarg, endptr, &baseband_filter_bw_hz); baseband_filter_bw = true; break; case 'c': signalsource = true; requested_mode_count++; result = parse_u32(optarg, &litude); break; case 'R': repeat = true; break; case 'C': crystal_correct = true; result = parse_u32(optarg, &crystal_correct_ppm); break; case 'h': case '?': usage(); return EXIT_SUCCESS; default: fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if (result != HACKRF_SUCCESS) { fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (lna_gain % 8) fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n"); if (vga_gain % 2) fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n"); if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) { fprintf(stderr, "argument error: num_samples must be less than %s/%sMio\n", u64toa(SAMPLES_TO_XFER_MAX, &ascii_u64_data[0]), u64toa((SAMPLES_TO_XFER_MAX / FREQ_ONE_MHZ), &ascii_u64_data[1])); usage(); return EXIT_FAILURE; } if (if_freq || lo_freq || image_reject) { /* explicit tuning selected */ if (!if_freq) { fprintf(stderr, "argument error: if_freq_hz must be specified for explicit tuning.\n"); usage(); return EXIT_FAILURE; } if (!image_reject) { fprintf(stderr, "argument error: image_reject must be specified for explicit tuning.\n"); usage(); return EXIT_FAILURE; } if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) { fprintf(stderr, "argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n"); usage(); return EXIT_FAILURE; } if (((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) && !force_ranges) { fprintf(stderr, "argument error: if_freq_hz should be between %s and %s.\n", u64toa(IF_MIN_HZ, &ascii_u64_data[0]), u64toa(IF_MAX_HZ, &ascii_u64_data[1])); usage(); return EXIT_FAILURE; } if ((if_freq_hz > IF_ABS_MAX_HZ) || (if_freq_hz < IF_ABS_MIN_HZ)) { fprintf(stderr, "argument error: if_freq_hz must be between %s and %s.\n", u64toa(IF_ABS_MIN_HZ, &ascii_u64_data[0]), u64toa(IF_ABS_MAX_HZ, &ascii_u64_data[1])); usage(); return EXIT_FAILURE; } if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) { fprintf(stderr, "argument error: lo_freq_hz shall be between %s and %s.\n", u64toa(LO_MIN_HZ, &ascii_u64_data[0]), u64toa(LO_MAX_HZ, &ascii_u64_data[1])); usage(); return EXIT_FAILURE; } if (image_reject_selection > 2) { fprintf(stderr, "argument error: image_reject must be 0, 1, or 2 .\n"); usage(); return EXIT_FAILURE; } if (automatic_tuning) { fprintf(stderr, "warning: freq_hz ignored by explicit tuning selection.\n"); automatic_tuning = false; } switch (image_reject_selection) { case RF_PATH_FILTER_BYPASS: freq_hz = if_freq_hz; break; case RF_PATH_FILTER_LOW_PASS: freq_hz = (int64_t) labs((long int) (if_freq_hz - lo_freq_hz)); break; case RF_PATH_FILTER_HIGH_PASS: freq_hz = if_freq_hz + lo_freq_hz; break; default: freq_hz = DEFAULT_FREQ_HZ; break; } fprintf(stderr, "explicit tuning specified for %s Hz.\n", u64toa(freq_hz, &ascii_u64_data[0])); } else if (automatic_tuning) { if (((freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ)) && !force_ranges) { fprintf(stderr, "argument error: freq_hz should be between %s and %s.\n", u64toa(FREQ_MIN_HZ, &ascii_u64_data[0]), u64toa(FREQ_MAX_HZ, &ascii_u64_data[1])); usage(); return EXIT_FAILURE; } if (freq_hz > FREQ_ABS_MAX_HZ) { fprintf(stderr, "argument error: freq_hz must be between %s and %s.\n", u64toa(FREQ_ABS_MIN_HZ, &ascii_u64_data[0]), u64toa(FREQ_ABS_MAX_HZ, &ascii_u64_data[1])); usage(); return EXIT_FAILURE; } } else { /* Use default freq */ freq_hz = DEFAULT_FREQ_HZ; automatic_tuning = true; } if (amp) { if (amp_enable > 1) { fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (antenna) { if (antenna_enable > 1) { fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (sample_rate) { if (sample_rate_hz > SAMPLE_RATE_MAX_HZ && !force_ranges) { fprintf(stderr, "argument error: sample_rate_hz should be less than or equal to %u Hz/%.03f MHz\n", SAMPLE_RATE_MAX_HZ, (float) (SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (sample_rate_hz < SAMPLE_RATE_MIN_HZ && !force_ranges) { fprintf(stderr, "argument error: sample_rate_hz should be greater than or equal to %u Hz/%.03f MHz\n", SAMPLE_RATE_MIN_HZ, (float) (SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } } else { sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ; } if (baseband_filter_bw) { if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) { fprintf(stderr, "argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MAX, (float) (BASEBAND_FILTER_BW_MAX / FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) { fprintf(stderr, "argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MIN, (float) (BASEBAND_FILTER_BW_MIN / FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } /* Compute nearest freq for bw filter */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz); } if (requested_mode_count > 1) { fprintf(stderr, "specify only one of: -t, -c, -r, -w\n"); usage(); return EXIT_FAILURE; } if (requested_mode_count < 1) { fprintf(stderr, "specify one of: -t, -c, -r, -w\n"); usage(); return EXIT_FAILURE; } if (receive) { transceiver_mode = TRANSCEIVER_MODE_RX; } if (transmit) { transceiver_mode = TRANSCEIVER_MODE_TX; } if (signalsource) { transceiver_mode = TRANSCEIVER_MODE_SS; if (amplitude > 127) { fprintf(stderr, "argument error: amplitude must be between 0 and 127.\n"); usage(); return EXIT_FAILURE; } } if (receive_wav) { time(&rawtime); timeinfo = localtime(&rawtime); transceiver_mode = TRANSCEIVER_MODE_RX; /* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */ strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo); snprintf( path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t) (freq_hz / (1000ull))); path = path_file; fprintf(stderr, "Receive wav file: %s\n", path); } // In signal source mode, the PATH argument is neglected. if (transceiver_mode != TRANSCEIVER_MODE_SS) { if (path == NULL) { fprintf(stderr, "specify a path to a file to transmit/receive\n"); usage(); return EXIT_FAILURE; } } // Change the freq and sample rate to correct the crystal clock error. if (crystal_correct) { sample_rate_hz = (uint32_t) ((double) sample_rate_hz * (1000000 - crystal_correct_ppm) / 1000000 + 0.5); freq_hz = freq_hz * (1000000 - crystal_correct_ppm) / 1000000; } result = hackrf_init(); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (transceiver_mode != TRANSCEIVER_MODE_SS) { if (transceiver_mode == TRANSCEIVER_MODE_RX) { if (strcmp(path, "-") == 0) { file = stdout; } else { file = fopen(path, "wb"); } } else { if (strcmp(path, "-") == 0) { file = stdin; } else { file = fopen(path, "rb"); } } if (file == NULL) { fprintf(stderr, "Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change file buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(file, NULL, _IOFBF, FD_BUFFER_SIZE); if (result != 0) { fprintf(stderr, "setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } } /* Write Wav header */ if (receive_wav) { fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file); } #ifdef _WIN32 SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif #ifdef _WIN32 interrupt_handle = CreateEvent(NULL, TRUE, FALSE, NULL); #else signal(SIGALRM, &sigalrm_callback_handler); #endif fprintf(stderr, "call hackrf_set_sample_rate(%u Hz/%.03f MHz)\n", sample_rate_hz, ((float) sample_rate_hz / (float) FREQ_ONE_MHZ)); result = hackrf_set_sample_rate(device, sample_rate_hz); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_sample_rate() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (baseband_filter_bw) { fprintf(stderr, "call hackrf_set_baseband_filter_bandwidth(%d Hz/%.03f MHz)\n", baseband_filter_bw_hz, ((float) baseband_filter_bw_hz / (float) FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth( device, baseband_filter_bw_hz); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_baseband_filter_bandwidth() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } fprintf(stderr, "call hackrf_set_hw_sync_mode(%d)\n", hw_sync ? 1 : 0); result = hackrf_set_hw_sync_mode( device, hw_sync ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_hw_sync_mode() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (automatic_tuning) { fprintf(stderr, "call hackrf_set_freq(%s Hz/%.03f MHz)\n", u64toa(freq_hz, &ascii_u64_data[0]), ((double) freq_hz / (double) FREQ_ONE_MHZ)); result = hackrf_set_freq(device, freq_hz); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } else { fprintf(stderr, "call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n", u64toa(if_freq_hz, &ascii_u64_data[0]), u64toa(lo_freq_hz, &ascii_u64_data[1]), hackrf_filter_path_name(image_reject_selection)); result = hackrf_set_freq_explicit( device, if_freq_hz, lo_freq_hz, image_reject_selection); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_freq_explicit() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (amp) { fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t) amp_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (antenna) { fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable); result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (transceiver_mode == TRANSCEIVER_MODE_RX) { result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); result |= hackrf_start_rx(device, rx_callback, NULL); } else { result = hackrf_set_txvga_gain(device, txvga_gain); result |= hackrf_enable_tx_flush(device, flush_callback, NULL); result |= hackrf_set_tx_block_complete_callback( device, tx_complete_callback); result |= hackrf_start_tx(device, tx_callback, NULL); } if (limit_num_samples) { fprintf(stderr, "samples_to_xfer %s/%sMio\n", u64toa(samples_to_xfer, &ascii_u64_data[0]), u64toa((samples_to_xfer / FREQ_ONE_MHZ), &ascii_u64_data[1])); } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); fprintf(stderr, "Stop with Ctrl-C\n"); // Set up an interval timer which will fire once per second. #ifdef _WIN32 HANDLE timer_handle = CreateWaitableTimer(NULL, FALSE, NULL); LARGE_INTEGER due_time; due_time.QuadPart = -10000000LL; LONG period = 1000; SetWaitableTimer(timer_handle, &due_time, period, NULL, NULL, 0); #else struct itimerval interval_timer = { .it_interval = {.tv_sec = 1, .tv_usec = 0}, .it_value = {.tv_sec = 1, .tv_usec = 0}}; setitimer(ITIMER_REAL, &interval_timer, NULL); #endif while (!do_exit) { struct timeval time_now; float time_difference, rate; if (stream_size > 0) { #ifndef _WIN32 if (stream_head == stream_tail) { usleep(10000); // queue empty } else { ssize_t len; ssize_t bytes_written; uint32_t _st = __atomic_load_n(&stream_tail, __ATOMIC_ACQUIRE); if (stream_head < _st) len = _st - stream_head; else len = stream_size - stream_head; bytes_written = fwrite(stream_buf + stream_head, 1, len, file); if (len != bytes_written) { fprintf(stderr, "write failed"); do_exit = true; }; stream_head = (stream_head + len) % stream_size; } if (stream_drop > 0) { uint32_t drops = __atomic_exchange_n( &stream_drop, 0, __ATOMIC_SEQ_CST); fprintf(stderr, "dropped frames: [%d]\n", drops); } #endif } else { uint64_t byte_count_now; uint64_t stream_power_now; #ifdef _WIN32 // Wait for interval timer event, or interrupt event. HANDLE handles[] = {timer_handle, interrupt_handle}; WaitForMultipleObjects(2, handles, FALSE, INFINITE); #else // Wait for SIGALRM from interval timer, or another signal. pause(); #endif gettimeofday(&time_now, NULL); /* Read and reset both totals at approximately the same time. */ byte_count_now = byte_count; stream_power_now = stream_power; byte_count = 0; stream_power = 0; time_difference = TimevalDiff(&time_now, &time_start); rate = (float) byte_count_now / time_difference; if ((byte_count_now == 0) && (hw_sync)) { fprintf(stderr, "Waiting for trigger...\n"); } else if (!((byte_count_now == 0) && (flush_complete))) { double full_scale_ratio = (double) stream_power_now / (byte_count_now * 127 * 127); double dB_full_scale = 10 * log10(full_scale_ratio) + 3.0; fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second, average power %3.1f dBfs", (byte_count_now / 1e6f), time_difference, (rate / 1e6f), dB_full_scale); if (display_stats) { bool tx = transmit || signalsource; result = update_stats(device, &state, &stats); if (result != HACKRF_SUCCESS) fprintf(stderr, "\nhackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result); else fprintf(stderr, ", %d bytes %s in buffer, %u %s, longest %u bytes\n", tx ? state.m4_count - state.m0_count : state.m0_count - state.m4_count, tx ? "filled" : "free", state.num_shortfalls, tx ? "underruns" : "overruns", state.longest_shortfall); } else { fprintf(stderr, "\n"); } } time_start = time_now; if ((byte_count_now == 0) && (!hw_sync) && (!flush_complete)) { exit_code = EXIT_FAILURE; fprintf(stderr, "\nCouldn't transfer any bytes for one second.\n"); break; } } } // Stop interval timer. #ifdef _WIN32 CancelWaitableTimer(timer_handle); CloseHandle(timer_handle); #else interval_timer.it_value.tv_sec = 0; setitimer(ITIMER_REAL, &interval_timer, NULL); #endif result = hackrf_is_streaming(device); if (do_exit) { fprintf(stderr, "\nExiting...\n"); } else { fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&t_end, NULL); time_diff = TimevalDiff(&t_end, &t_start); fprintf(stderr, "Total time: %5.5f s\n", time_diff); if (device != NULL) { if (receive || receive_wav) { result = hackrf_stop_rx(device); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_stop_rx() done\n"); } } if (transmit || signalsource) { result = hackrf_stop_tx(device); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_stop_tx() done\n"); } } if (display_stats) { result = update_stats(device, &state, &stats); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "Transfer statistics:\n" "%" PRIu64 " bytes transferred by M0\n" "%" PRIu64 " bytes transferred by M4\n" "%u %s, longest %u bytes\n", stats.m0_total, stats.m4_total, state.num_shortfalls, (transmit || signalsource) ? "underruns" : "overruns", state.longest_shortfall); } } result = hackrf_close(device); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_close() done\n"); } hackrf_exit(); fprintf(stderr, "hackrf_exit() done\n"); } if (file != NULL) { if (receive_wav) { /* Get size of file */ file_pos = ftell(file); /* Update Wav Header */ wave_file_hdr.hdr.size = file_pos - 8; wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz; wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec * 2; wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr); /* Overwrite header with updated data */ rewind(file); fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file); } if (file != stdin) { fflush(file); } if ((file != stdout) && (file != stdin)) { fclose(file); file = NULL; fprintf(stderr, "fclose() done\n"); } } fprintf(stderr, "exit\n"); return exit_code; }