Files
-
hardware / bubblegum / bubblegum.brd
-
hardware / bubblegum / bubblegum.sch
-
hardware / hackrf-one / baseband.kicad_sch
-
hardware / hackrf-one / clock.kicad_sch
-
hardware / hackrf-one / frontend.kicad_sch
-
hardware / hackrf-one / hackrf-one.kicad_pcb
-
hardware / hackrf-one / hackrf-one.kicad_sch
-
hardware / hackrf-one / mcu.kicad_sch
-
hardware / jawbreaker / baseband.sch
-
hardware / jawbreaker / frontend.sch
-
hardware / jawbreaker / jawbreaker.brd
-
hardware / jawbreaker / jawbreaker.sch
-
hardware / jawbreaker / mcu.sch
-
hardware / jellybean / jellybean.brd
-
hardware / jellybean / jellybean.sch
-
hardware / lemondrop / lemondrop.brd
-
hardware / lemondrop / lemondrop.sch
-
hardware / licorice / licorice.brd
-
hardware / licorice / licorice.sch
-
hardware / LNA915 / LNA915.kicad_pcb
-
hardware / LNA915 / LNA915.sch
-
hardware / lollipop / lollipop.brd
-
hardware / lollipop / lollipop.sch
-
hardware / marzipan / baseband.sch
-
hardware / marzipan / frontend.sch
-
hardware / marzipan / marzipan.kicad_pcb
-
hardware / marzipan / marzipan.sch
-
hardware / marzipan / mcu.sch
-
hardware / neapolitan / baseband.sch
-
hardware / neapolitan / frontend.sch
-
hardware / neapolitan / mcu.sch
-
hardware / neapolitan / neapolitan.kicad_pcb
-
hardware / neapolitan / neapolitan.sch
-
hardware / operacake / operacake.kicad_pcb
-
hardware / operacake / operacake.sch
Last update 2 years 1 month
by
Gianpaolo Macario
Fileshosthackrf-toolssrc | |
---|---|
.. | |
CMakeLists.txt | |
hackrf_clock.c | |
hackrf_cpldjtag.c | |
hackrf_debug.c | |
hackrf_info.c | |
hackrf_operacake.c | |
hackrf_spiflash.c | |
hackrf_sweep.c | |
hackrf_transfer.c |
hackrf_sweep.c/* * Copyright 2016-2022 Great Scott Gadgets <info@greatscottgadgets.com> * Copyright 2016 Dominic Spill <dominicgs@gmail.com> * Copyright 2016 Mike Walters <mike@flomp.net> * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include <hackrf.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <getopt.h> #include <time.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <errno.h> #include <fftw3.h> #include <inttypes.h> #define _FILE_OFFSET_BITS 64 #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #ifdef _WIN32 #define _USE_MATH_DEFINES #include <windows.h> #ifdef _MSC_VER #ifdef _WIN64 typedef int64_t ssize_t; #else typedef int32_t ssize_t; #endif #define strtoull _strtoui64 #define snprintf _snprintf int gettimeofday(struct timeval* tv, void* ignored) { FILETIME ft; unsigned __int64 tmp = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmp |= ft.dwHighDateTime; tmp <<= 32; tmp |= ft.dwLowDateTime; tmp /= 10; tmp -= 11644473600000000Ui64; tv->tv_sec = (long) (tmp / 1000000UL); tv->tv_usec = (long) (tmp % 1000000UL); } return 0; } #endif #endif #if defined(__GNUC__) #include <unistd.h> #include <sys/time.h> #endif #include <signal.h> #include <math.h> #define FD_BUFFER_SIZE (8 * 1024) #define FREQ_ONE_MHZ (1000000ull) #define FREQ_MIN_MHZ (0) /* 0 MHz */ #define FREQ_MAX_MHZ (7250) /* 7250 MHz */ #define DEFAULT_SAMPLE_RATE_HZ (20000000) /* 20MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (15000000) /* 15MHz default */ #define TUNE_STEP (DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ) #define OFFSET 7500000 #define BLOCKS_PER_TRANSFER 16 #define THROWAWAY_BLOCKS 2 #if defined _WIN32 #define m_sleep(a) Sleep((a)) #else #define m_sleep(a) usleep((a * 1000)) #endif uint32_t num_sweeps = 0; int num_ranges = 0; uint16_t frequencies[MAX_SWEEP_RANGES * 2]; int step_count; static float TimevalDiff(const struct timeval* a, const struct timeval* b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t ulong_value; if (strlen(s) > 2) { if (s[0] == '0') { if ((s[1] == 'x') || (s[1] == 'X')) { base = 16; s += 2; } else if ((s[1] == 'b') || (s[1] == 'B')) { base = 2; s += 2; } } } s_end = s; ulong_value = strtoul(s, &s_end, base); if ((s != s_end) && (*s_end == 0)) { *value = (uint32_t) ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max) { int result; char* sep = strchr(s, ':'); if (!sep) { return HACKRF_ERROR_INVALID_PARAM; } *sep = 0; result = parse_u32(s, value_min); if (result != HACKRF_SUCCESS) { return result; } result = parse_u32(sep + 1, value_max); if (result != HACKRF_SUCCESS) { return result; } return HACKRF_SUCCESS; } volatile bool do_exit = false; FILE* outfile = NULL; volatile uint32_t byte_count = 0; volatile uint64_t sweep_count = 0; struct timeval time_start; struct timeval t_start; bool amp = false; uint32_t amp_enable; bool antenna = false; uint32_t antenna_enable; bool binary_output = false; bool ifft_output = false; bool one_shot = false; bool finite_mode = false; volatile bool sweep_started = false; int fftSize = 20; double fft_bin_width; fftwf_complex* fftwIn = NULL; fftwf_complex* fftwOut = NULL; fftwf_plan fftwPlan = NULL; fftwf_complex* ifftwIn = NULL; fftwf_complex* ifftwOut = NULL; fftwf_plan ifftwPlan = NULL; uint32_t ifft_idx = 0; float* pwr; float* window; float logPower(fftwf_complex in, float scale) { float re = in[0] * scale; float im = in[1] * scale; float magsq = re * re + im * im; return (float) (log2(magsq) * 10.0f / log2(10.0f)); } int rx_callback(hackrf_transfer* transfer) { int8_t* buf; uint8_t* ubuf; uint64_t frequency; /* in Hz */ uint64_t band_edge; uint32_t record_length; int i, j, ifft_bins; struct tm* fft_time; char time_str[50]; struct timeval usb_transfer_time; if (NULL == outfile) { return -1; } if (do_exit) { return 0; } gettimeofday(&usb_transfer_time, NULL); byte_count += transfer->valid_length; buf = (int8_t*) transfer->buffer; ifft_bins = fftSize * step_count; for (j = 0; j < BLOCKS_PER_TRANSFER; j++) { ubuf = (uint8_t*) buf; if (ubuf[0] == 0x7F && ubuf[1] == 0x7F) { frequency = ((uint64_t) (ubuf[9]) << 56) | ((uint64_t) (ubuf[8]) << 48) | ((uint64_t) (ubuf[7]) << 40) | ((uint64_t) (ubuf[6]) << 32) | ((uint64_t) (ubuf[5]) << 24) | ((uint64_t) (ubuf[4]) << 16) | ((uint64_t) (ubuf[3]) << 8) | ubuf[2]; } else { buf += BYTES_PER_BLOCK; continue; } if (frequency == (uint64_t) (FREQ_ONE_MHZ * frequencies[0])) { if (sweep_started) { if (ifft_output) { fftwf_execute(ifftwPlan); for (i = 0; i < ifft_bins; i++) { ifftwOut[i][0] *= 1.0f / ifft_bins; ifftwOut[i][1] *= 1.0f / ifft_bins; fwrite(&ifftwOut[i][0], sizeof(float), 1, outfile); fwrite(&ifftwOut[i][1], sizeof(float), 1, outfile); } } sweep_count++; if (one_shot) { do_exit = true; } else if (finite_mode && sweep_count == num_sweeps) { do_exit = true; } } sweep_started = true; } if (do_exit) { return 0; } if (!sweep_started) { buf += BYTES_PER_BLOCK; continue; } if ((FREQ_MAX_MHZ * FREQ_ONE_MHZ) < frequency) { buf += BYTES_PER_BLOCK; continue; } /* copy to fftwIn as floats */ buf += BYTES_PER_BLOCK - (fftSize * 2); for (i = 0; i < fftSize; i++) { fftwIn[i][0] = buf[i * 2] * window[i] * 1.0f / 128.0f; fftwIn[i][1] = buf[i * 2 + 1] * window[i] * 1.0f / 128.0f; } buf += fftSize * 2; fftwf_execute(fftwPlan); for (i = 0; i < fftSize; i++) { pwr[i] = logPower(fftwOut[i], 1.0f / fftSize); } if (binary_output) { record_length = 2 * sizeof(band_edge) + (fftSize / 4) * sizeof(float); fwrite(&record_length, sizeof(record_length), 1, outfile); band_edge = frequency; fwrite(&band_edge, sizeof(band_edge), 1, outfile); band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 4; fwrite(&band_edge, sizeof(band_edge), 1, outfile); fwrite(&pwr[1 + (fftSize * 5) / 8], sizeof(float), fftSize / 4, outfile); fwrite(&record_length, sizeof(record_length), 1, outfile); band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 2; fwrite(&band_edge, sizeof(band_edge), 1, outfile); band_edge = frequency + (DEFAULT_SAMPLE_RATE_HZ * 3) / 4; fwrite(&band_edge, sizeof(band_edge), 1, outfile); fwrite(&pwr[1 + fftSize / 8], sizeof(float), fftSize / 4, outfile); } else if (ifft_output) { ifft_idx = (uint32_t) round( (frequency - (uint64_t) (FREQ_ONE_MHZ * frequencies[0])) / fft_bin_width); ifft_idx = (ifft_idx + ifft_bins / 2) % ifft_bins; for (i = 0; (fftSize / 4) > i; i++) { ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize * 5) / 8][0]; ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize * 5) / 8][1]; } ifft_idx += fftSize / 2; ifft_idx %= ifft_bins; for (i = 0; (fftSize / 4) > i; i++) { ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize / 8)][0]; ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize / 8)][1]; } } else { time_t time_stamp_seconds = usb_transfer_time.tv_sec; fft_time = localtime(&time_stamp_seconds); strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time); fprintf(outfile, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u", time_str, (long int) usb_transfer_time.tv_usec, (uint64_t) (frequency), (uint64_t) (frequency + DEFAULT_SAMPLE_RATE_HZ / 4), fft_bin_width, fftSize); for (i = 0; (fftSize / 4) > i; i++) { fprintf(outfile, ", %.2f", pwr[i + 1 + (fftSize * 5) / 8]); } fprintf(outfile, "\n"); fprintf(outfile, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u", time_str, (long int) usb_transfer_time.tv_usec, (uint64_t) (frequency + (DEFAULT_SAMPLE_RATE_HZ / 2)), (uint64_t) (frequency + ((DEFAULT_SAMPLE_RATE_HZ * 3) / 4)), fft_bin_width, fftSize); for (i = 0; (fftSize / 4) > i; i++) { fprintf(outfile, ", %.2f", pwr[i + 1 + (fftSize / 8)]); } fprintf(outfile, "\n"); } } return 0; } static void usage() { fprintf(stderr, "Usage:\n" "\t[-h] # this help\n" "\t[-d serial_number] # Serial number of desired HackRF\n" "\t[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable\n" "\t[-f freq_min:freq_max] # minimum and maximum frequencies in MHz\n" "\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable\n" "\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n" "\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n" "\t[-w bin_width] # FFT bin width (frequency resolution) in Hz, 2445-5000000\n" "\t[-1] # one shot mode\n" "\t[-N num_sweeps] # Number of sweeps to perform\n" "\t[-B] # binary output\n" "\t[-I] # binary inverse FFT output\n" "\t-r filename # output file\n" "\n" "Output fields:\n" "\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n"); } static hackrf_device* device = NULL; #ifdef _MSC_VER BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; return TRUE; } return FALSE; } #else void sigint_callback_handler(int signum) { fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; } #endif int main(int argc, char** argv) { int opt, i, result = 0; const char* path = NULL; const char* serial_number = NULL; int exit_code = EXIT_SUCCESS; struct timeval time_now; struct timeval time_prev; float time_diff; float sweep_rate = 0; unsigned int lna_gain = 16, vga_gain = 20; uint32_t freq_min = 0; uint32_t freq_max = 6000; uint32_t requested_fft_bin_width; while ((opt = getopt(argc, argv, "a:f:p:l:g:d:n:N:w:1BIr:h?")) != EOF) { result = HACKRF_SUCCESS; switch (opt) { case 'd': serial_number = optarg; break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'f': result = parse_u32_range(optarg, &freq_min, &freq_max); if (freq_min >= freq_max) { fprintf(stderr, "argument error: freq_max must be greater than freq_min.\n"); usage(); return EXIT_FAILURE; } if (FREQ_MAX_MHZ < freq_max) { fprintf(stderr, "argument error: freq_max may not be higher than %u.\n", FREQ_MAX_MHZ); usage(); return EXIT_FAILURE; } if (MAX_SWEEP_RANGES <= num_ranges) { fprintf(stderr, "argument error: specify a maximum of %u frequency ranges.\n", MAX_SWEEP_RANGES); usage(); return EXIT_FAILURE; } frequencies[2 * num_ranges] = (uint16_t) freq_min; frequencies[2 * num_ranges + 1] = (uint16_t) freq_max; num_ranges++; break; case 'p': antenna = true; result = parse_u32(optarg, &antenna_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'g': result = parse_u32(optarg, &vga_gain); break; case 'N': finite_mode = true; result = parse_u32(optarg, &num_sweeps); break; case 'w': result = parse_u32(optarg, &requested_fft_bin_width); fftSize = DEFAULT_SAMPLE_RATE_HZ / requested_fft_bin_width; break; case '1': one_shot = true; break; case 'B': binary_output = true; break; case 'I': ifft_output = true; break; case 'r': path = optarg; break; case 'h': case '?': usage(); return EXIT_SUCCESS; default: fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if (result != HACKRF_SUCCESS) { fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (lna_gain % 8) { fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n"); } if (vga_gain % 2) { fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n"); } if (amp) { if (amp_enable > 1) { fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (antenna) { if (antenna_enable > 1) { fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (0 == num_ranges) { frequencies[0] = (uint16_t) freq_min; frequencies[1] = (uint16_t) freq_max; num_ranges++; } if (binary_output && ifft_output) { fprintf(stderr, "argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n"); return EXIT_FAILURE; } if (ifft_output && (1 < num_ranges)) { fprintf(stderr, "argument error: only one frequency range is supported in IFFT output (-I) mode.\n"); return EXIT_FAILURE; } /* * The FFT bin width must be no more than a quarter of the sample rate * for interleaved mode. With our fixed sample rate of 20 Msps, that * results in a maximum bin width of 5000000 Hz. */ if (4 > fftSize) { fprintf(stderr, "argument error: FFT bin width (-w) must be no more than 5000000\n"); return EXIT_FAILURE; } /* * The maximum number of FFT bins we support is equal to the number of * samples in a block. Each block consists of 16384 bytes minus 10 * bytes for the frequency header, leaving room for 8187 two-byte * samples. As we pad fftSize up to the next odd multiple of four, this * makes our maximum supported fftSize 8180. With our fixed sample * rate of 20 Msps, that results in a minimum bin width of 2445 Hz. */ if (8180 < fftSize) { fprintf(stderr, "argument error: FFT bin width (-w) must be no less than 2445\n"); return EXIT_FAILURE; } /* In interleaved mode, the FFT bin selection works best if the total * number of FFT bins is equal to an odd multiple of four. * (e.g. 4, 12, 20, 28, 36, . . .) */ while ((fftSize + 4) % 8) { fftSize++; } fft_bin_width = (double) DEFAULT_SAMPLE_RATE_HZ / fftSize; fftwIn = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize); fftwOut = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize); fftwPlan = fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, FFTW_MEASURE); pwr = (float*) fftwf_malloc(sizeof(float) * fftSize); window = (float*) fftwf_malloc(sizeof(float) * fftSize); for (i = 0; i < fftSize; i++) { window[i] = (float) (0.5f * (1.0f - cos(2 * M_PI * i / (fftSize - 1)))); } #ifdef _MSC_VER if (binary_output) { _setmode(_fileno(stdout), _O_BINARY); } #endif result = hackrf_init(); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if ((NULL == path) || (strcmp(path, "-") == 0)) { outfile = stdout; } else { outfile = fopen(path, "wb"); } if (NULL == outfile) { fprintf(stderr, "Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change outfile buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(outfile, NULL, _IOFBF, FD_BUFFER_SIZE); if (result != 0) { fprintf(stderr, "setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } #ifdef _MSC_VER SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif fprintf(stderr, "call hackrf_sample_rate_set(%.03f MHz)\n", ((float) DEFAULT_SAMPLE_RATE_HZ / (float) FREQ_ONE_MHZ)); result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n", ((float) DEFAULT_BASEBAND_FILTER_BANDWIDTH / (float) FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth( device, DEFAULT_BASEBAND_FILTER_BANDWIDTH); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); /* * For each range, plan a whole number of tuning steps of a certain * bandwidth. Increase high end of range if necessary to accommodate a * whole number of steps, minimum 1. */ for (i = 0; i < num_ranges; i++) { step_count = 1 + (frequencies[2 * i + 1] - frequencies[2 * i] - 1) / TUNE_STEP; frequencies[2 * i + 1] = (uint16_t) (frequencies[2 * i] + step_count * TUNE_STEP); fprintf(stderr, "Sweeping from %u MHz to %u MHz\n", frequencies[2 * i], frequencies[2 * i + 1]); } if (ifft_output) { ifftwIn = (fftwf_complex*) fftwf_malloc( sizeof(fftwf_complex) * fftSize * step_count); ifftwOut = (fftwf_complex*) fftwf_malloc( sizeof(fftwf_complex) * fftSize * step_count); ifftwPlan = fftwf_plan_dft_1d( fftSize * step_count, ifftwIn, ifftwOut, FFTW_BACKWARD, FFTW_MEASURE); } result = hackrf_init_sweep( device, frequencies, num_ranges, BYTES_PER_BLOCK, TUNE_STEP * FREQ_ONE_MHZ, OFFSET, INTERLEAVED); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_init_sweep() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } result |= hackrf_start_rx_sweep(device, rx_callback, NULL); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_start_rx_sweep() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (amp) { fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t) amp_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (antenna) { fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable); result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } gettimeofday(&t_start, NULL); time_prev = t_start; fprintf(stderr, "Stop with Ctrl-C\n"); while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) { float time_difference; m_sleep(50); gettimeofday(&time_now, NULL); if (TimevalDiff(&time_now, &time_prev) >= 1.0f) { time_difference = TimevalDiff(&time_now, &t_start); sweep_rate = (float) sweep_count / time_difference; fprintf(stderr, "%" PRIu64 " total sweeps completed, %.2f sweeps/second\n", sweep_count, sweep_rate); if (byte_count == 0) { exit_code = EXIT_FAILURE; fprintf(stderr, "\nCouldn't transfer any data for one second.\n"); break; } byte_count = 0; time_prev = time_now; } } fflush(outfile); result = hackrf_is_streaming(device); if (do_exit) { fprintf(stderr, "\nExiting...\n"); } else { fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&time_now, NULL); time_diff = TimevalDiff(&time_now, &t_start); if ((sweep_rate == 0) && (time_diff > 0)) { sweep_rate = sweep_count / time_diff; } fprintf(stderr, "Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n", sweep_count, time_diff, sweep_rate); if (device != NULL) { result = hackrf_close(device); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_close() done\n"); } hackrf_exit(); fprintf(stderr, "hackrf_exit() done\n"); } fflush(outfile); if ((outfile != NULL) && (outfile != stdout)) { fclose(outfile); outfile = NULL; fprintf(stderr, "fclose() done\n"); } fftwf_free(fftwIn); fftwf_free(fftwOut); fftwf_free(pwr); fftwf_free(window); fftwf_free(ifftwIn); fftwf_free(ifftwOut); fprintf(stderr, "exit\n"); return exit_code; }