Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesmarbles
..
bootloader
drivers
hardware_design
ramp
random
resources
test
__init__.py
clock_self_patching_detector.h
cv_reader.cc
cv_reader.h
cv_reader_channel.h
io_buffer.h
makefile
marbles.cc
note_filter.h
resources.cc
resources.h
scale_recorder.h
settings.cc
settings.h
ui.cc
ui.h
ui.cc
// Copyright 2015 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // User interface. #include "marbles/ui.h" #include <algorithm> #include "stmlib/system/system_clock.h" #include "marbles/drivers/clock_inputs.h" #include "marbles/cv_reader.h" #include "marbles/scale_recorder.h" #include "marbles/settings.h" namespace marbles { const int32_t kLongPressDuration = 2000; using namespace std; using namespace stmlib; /* static */ const LedColor Ui::palette_[4] = { LED_COLOR_GREEN, LED_COLOR_YELLOW, LED_COLOR_RED, LED_COLOR_OFF }; /* static */ AlternateKnobMapping Ui::alternate_knob_mappings_[ADC_CHANNEL_LAST]; void Ui::Init( Settings* settings, CvReader* cv_reader, ScaleRecorder* scale_recorder, ClockInputs* clock_inputs) { settings_ = settings; cv_reader_ = cv_reader; scale_recorder_ = scale_recorder; clock_inputs_ = clock_inputs; leds_.Init(); switches_.Init(); queue_.Init(); // Initialize generator from settings_->state(); fill(&pot_value_[0], &pot_value_[ADC_CHANNEL_LAST], 0.0f); State* state = settings_->mutable_state(); alternate_knob_mappings_[ADC_CHANNEL_T_BIAS].unlock_switch = SWITCH_T_MODEL; alternate_knob_mappings_[ADC_CHANNEL_T_BIAS].destination = &state->t_pulse_width_mean; alternate_knob_mappings_[ADC_CHANNEL_T_JITTER].unlock_switch = SWITCH_T_MODEL; alternate_knob_mappings_[ADC_CHANNEL_T_JITTER].destination = &state->t_pulse_width_std; alternate_knob_mappings_[ADC_CHANNEL_T_RATE].unlock_switch = SWITCH_X_MODE; alternate_knob_mappings_[ADC_CHANNEL_T_RATE].destination = &state->y_divider; alternate_knob_mappings_[ADC_CHANNEL_X_SPREAD].unlock_switch = SWITCH_X_MODE; alternate_knob_mappings_[ADC_CHANNEL_X_SPREAD].destination = &state->y_spread; alternate_knob_mappings_[ADC_CHANNEL_X_BIAS].unlock_switch = SWITCH_X_MODE; alternate_knob_mappings_[ADC_CHANNEL_X_BIAS].destination = &state->y_bias; alternate_knob_mappings_[ADC_CHANNEL_X_STEPS].unlock_switch = SWITCH_X_MODE; alternate_knob_mappings_[ADC_CHANNEL_X_STEPS].destination = &state->y_steps; setting_modification_flag_ = false; output_test_mode_ = false; if (switches_.pressed_immediate(SWITCH_X_MODE)) { if (state->color_blind == 1) { state->color_blind = 0; } else { state->color_blind = 1; } settings_->SaveState(); } deja_vu_lock_ = false; } void Ui::SaveState() { settings_->SaveState(); } void Ui::Poll() { // 1kHz. system_clock.Tick(); switches_.Debounce(); for (int i = 0; i < SWITCH_LAST; ++i) { if (switches_.just_pressed(Switch(i))) { queue_.AddEvent(CONTROL_SWITCH, i, 0); press_time_[i] = system_clock.milliseconds(); ignore_release_[i] = false; } if (switches_.pressed(Switch(i)) && !ignore_release_[i]) { int32_t pressed_time = system_clock.milliseconds() - press_time_[i]; if (pressed_time > kLongPressDuration && !setting_modification_flag_) { queue_.AddEvent(CONTROL_SWITCH, i, pressed_time); ignore_release_[i] = true; } } if (switches_.released(Switch(i)) && !ignore_release_[i]) { queue_.AddEvent( CONTROL_SWITCH, i, system_clock.milliseconds() - press_time_[i] + 1); ignore_release_[i] = true; } } UpdateLEDs(); } /* static */ LedColor Ui::MakeColor(uint8_t value, bool color_blind) { bool slow_blink = (system_clock.milliseconds() & 255) > 128; uint8_t bank = value >= 3 ? 1 : 0; value -= bank * 3; LedColor color = palette_[value]; if (color_blind) { uint8_t pwm_counter = system_clock.milliseconds() & 15; uint8_t triangle = (system_clock.milliseconds() >> 5) & 31; triangle = triangle < 16 ? triangle : 31 - triangle; if (value == 0) { color = pwm_counter < (4 + (triangle >> 2)) ? LED_COLOR_GREEN : LED_COLOR_OFF; } else if (value == 1) { color = LED_COLOR_YELLOW; } else { color = pwm_counter == 0 ? LED_COLOR_RED : LED_COLOR_OFF; } } return slow_blink || !bank ? color : LED_COLOR_OFF; } void Ui::UpdateLEDs() { bool blink = (system_clock.milliseconds() & 127) > 64; bool slow_blink = (system_clock.milliseconds() & 255) > 128; bool fast_blink = (system_clock.milliseconds() & 63) > 32; const State& state = settings_->state(); bool cb = state.color_blind == 1; LedColor scale_color = state.x_scale < 3 ? (slow_blink ? palette_[state.x_scale] : LED_COLOR_OFF) : (fast_blink ? palette_[state.x_scale - 3] : LED_COLOR_OFF); if (cb) { int poly_counter = (system_clock.milliseconds() >> 6) % 12; if ((poly_counter >> 1) < (state.x_scale + 1) && (poly_counter & 1)) { scale_color = LED_COLOR_YELLOW; } else { scale_color = LED_COLOR_OFF; } } leds_.Clear(); int slow_triangle = (system_clock.milliseconds() & 1023) >> 5; slow_triangle = slow_triangle >= 16 ? 31 - slow_triangle : slow_triangle; int pw = system_clock.milliseconds() & 15; bool deja_vu_glow = !deja_vu_lock_ || (slow_triangle >= pw); switch (mode_) { case UI_MODE_NORMAL: case UI_MODE_RECORD_SCALE: { leds_.set(LED_T_MODEL, MakeColor(state.t_model, cb)); leds_.set(LED_T_RANGE, MakeColor(state.t_range, cb)); leds_.set(LED_T_DEJA_VU, state.t_deja_vu && deja_vu_glow ? LED_COLOR_GREEN : LED_COLOR_OFF); leds_.set(LED_X_CONTROL_MODE, MakeColor(state.x_control_mode, cb)); leds_.set(LED_X_DEJA_VU, state.x_deja_vu && deja_vu_glow ? LED_COLOR_GREEN : LED_COLOR_OFF); if (mode_ == UI_MODE_NORMAL) { leds_.set(LED_X_RANGE, state.x_register_mode ? LED_COLOR_OFF : MakeColor(state.x_range, cb)); leds_.set(LED_X_EXT, state.x_register_mode ? LED_COLOR_GREEN : LED_COLOR_OFF); } else { leds_.set(LED_X_RANGE, scale_color); leds_.set(LED_X_EXT, LED_COLOR_GREEN); } } break; case UI_MODE_SELECT_SCALE: leds_.set(LED_X_RANGE, scale_color); break; case UI_MODE_CALIBRATION_1: leds_.set(LED_T_RANGE, blink ? MakeColor(0, cb) : LED_COLOR_OFF); break; case UI_MODE_CALIBRATION_2: leds_.set(LED_T_RANGE, blink ? MakeColor(1, cb) : LED_COLOR_OFF); break; case UI_MODE_CALIBRATION_3: leds_.set(LED_X_RANGE, blink ? MakeColor(0, cb) : LED_COLOR_OFF); break; case UI_MODE_CALIBRATION_4: leds_.set(LED_X_RANGE, blink ? MakeColor(1, cb) : LED_COLOR_OFF); break; case UI_MODE_PANIC: leds_.set(LED_T_MODEL, blink ? LED_COLOR_RED : LED_COLOR_OFF); leds_.set(LED_T_RANGE, !blink ? LED_COLOR_RED : LED_COLOR_OFF); leds_.set(LED_X_CONTROL_MODE, !blink ? LED_COLOR_RED : LED_COLOR_OFF); leds_.set(LED_X_RANGE, blink ? LED_COLOR_RED : LED_COLOR_OFF); break; } leds_.Write(); } void Ui::FlushEvents() { queue_.Flush(); } void Ui::OnSwitchPressed(const Event& e) { } void Ui::OnSwitchReleased(const Event& e) { if (setting_modification_flag_) { for (int i = 0; i < ADC_CHANNEL_LAST; ++i) { cv_reader_->mutable_channel(i)->UnlockPot(); } setting_modification_flag_ = false; return; } // Check if the other switch is still pressed. if (e.control_id == SWITCH_T_RANGE && switches_.pressed(SWITCH_X_RANGE)) { mode_ = UI_MODE_CALIBRATION_1; ignore_release_[SWITCH_T_RANGE] = ignore_release_[SWITCH_X_RANGE] = true; return; } State* state = settings_->mutable_state(); switch (e.control_id) { case SWITCH_T_DEJA_VU: state->t_deja_vu = !state->t_deja_vu; break; case SWITCH_X_DEJA_VU: state->x_deja_vu = !state->x_deja_vu; break; case SWITCH_T_MODEL: { uint8_t bank = state->t_model / 3; if (e.data >= kLongPressDuration) { if (!bank) { state->t_model += 3; } } else { if (bank) { state->t_model -= 3; } else { state->t_model = (state->t_model + 1) % 3; } } SaveState(); } break; case SWITCH_T_RANGE: { if (mode_ >= UI_MODE_CALIBRATION_1 && mode_ <= UI_MODE_CALIBRATION_4) { NextCalibrationStep(); } else { state->t_range = (state->t_range + 1) % 3; } SaveState(); } break; case SWITCH_X_MODE: state->x_control_mode = (state->x_control_mode + 1) % 3; SaveState(); break; case SWITCH_X_EXT: if (mode_ == UI_MODE_RECORD_SCALE) { int scale_index = settings_->state().x_scale; bool success = true; if (e.data >= kLongPressDuration) { settings_->ResetScale(scale_index); } else { success = scale_recorder_->ExtractScale( settings_->mutable_scale(scale_index)); } if (success) { settings_->SavePersistentData(); settings_->set_dirty_scale_index(scale_index); } mode_ = UI_MODE_NORMAL; } else if (e.data >= kLongPressDuration) { mode_ = UI_MODE_RECORD_SCALE; scale_recorder_->Clear(); } else { state->x_register_mode = !state->x_register_mode; SaveState(); } break; case SWITCH_X_RANGE: if (mode_ >= UI_MODE_CALIBRATION_1 && mode_ <= UI_MODE_CALIBRATION_4) { NextCalibrationStep(); } else if (e.data >= kLongPressDuration) { if (mode_ == UI_MODE_NORMAL) { mode_ = UI_MODE_SELECT_SCALE; } } else if (mode_ == UI_MODE_SELECT_SCALE) { state->x_scale = (state->x_scale + 1) % kNumScales; } else { if (!state->x_register_mode) { state->x_range = (state->x_range + 1) % 3; } } SaveState(); break; } } void Ui::TerminateScaleRecording() { for (int i = 0; i < ADC_CHANNEL_LAST; ++i) { cv_reader_->mutable_channel(i)->UnlockPot(); } mode_ = UI_MODE_NORMAL; } void Ui::NextCalibrationStep() { switch (mode_) { case UI_MODE_CALIBRATION_1: cv_reader_->CalibrateOffsets(); cv_reader_->CalibrateRateC1(); mode_ = UI_MODE_CALIBRATION_2; break; case UI_MODE_CALIBRATION_2: cv_reader_->CalibrateRateC3(); mode_ = UI_MODE_CALIBRATION_3; break; case UI_MODE_CALIBRATION_3: cv_reader_->CalibrateSpreadC1(); mode_ = UI_MODE_CALIBRATION_4; break; case UI_MODE_CALIBRATION_4: if (cv_reader_->CalibrateSpreadC3()) { settings_->SavePersistentData(); mode_ = UI_MODE_NORMAL; } else { mode_ = UI_MODE_PANIC; } break; default: break; } } void Ui::UpdateHiddenParameters() { // Check if some pots have been moved. for (int i = 0; i < ADC_CHANNEL_LAST; ++i) { float new_value = cv_reader_->channel(i).unscaled_pot(); float old_value = pot_value_[i]; bool changed = fabs(new_value - old_value) >= 0.008f; if (changed) { pot_value_[i] = new_value; AlternateKnobMapping mapping = alternate_knob_mappings_[i]; if (switches_.pressed(mapping.unlock_switch)) { if (mapping.unlock_switch == SWITCH_T_RANGE && new_value < 0.1f) { new_value = 0.0f; } *mapping.destination = static_cast<uint8_t>(new_value * 255.0f); cv_reader_->mutable_channel(i)->LockPot(); // The next time a switch is released, we unlock the pots. setting_modification_flag_ = true; } } } } void Ui::DoEvents() { while (queue_.available()) { Event e = queue_.PullEvent(); if (e.control_type == CONTROL_SWITCH) { if (e.data == 0) { OnSwitchPressed(e); } else { OnSwitchReleased(e); } } } UpdateHiddenParameters(); if (queue_.idle_time() > 800 && mode_ == UI_MODE_PANIC) { mode_ = UI_MODE_NORMAL; } if (mode_ == UI_MODE_SELECT_SCALE) { if (queue_.idle_time() > 4000) { mode_ = UI_MODE_NORMAL; queue_.Touch(); } } else if (queue_.idle_time() > 1000) { queue_.Touch(); } } uint8_t Ui::HandleFactoryTestingRequest(uint8_t command) { uint8_t argument = command & 0x1f; command = command >> 5; uint8_t reply = 0; switch (command) { case FACTORY_TESTING_READ_POT: case FACTORY_TESTING_READ_CV: reply = cv_reader_->adc_value(argument); break; case FACTORY_TESTING_READ_NORMALIZATION: reply = clock_inputs_->is_normalized(ClockInput(argument)) ? 255 : 0; break; case FACTORY_TESTING_READ_GATE: reply = argument >= SWITCH_LAST ? clock_inputs_->value(ClockInput(argument - SWITCH_LAST)) : switches_.pressed(Switch(argument)); break; case FACTORY_TESTING_GENERATE_TEST_SIGNALS: output_test_mode_ = static_cast<bool>(argument); fill( &output_test_forced_dac_code_[0], &output_test_forced_dac_code_[4], 0); break; case FACTORY_TESTING_CALIBRATE: if (argument == 0) { // Revert all settings before getting into calibration mode. settings_->mutable_state()->t_deja_vu = 0; settings_->mutable_state()->x_deja_vu = 0; settings_->mutable_state()->t_model = 0; settings_->mutable_state()->t_range = 1; settings_->mutable_state()->x_control_mode = 0; settings_->mutable_state()->x_range = 2; settings_->mutable_state()->x_register_mode = 0; settings_->SavePersistentData(); mode_ = UI_MODE_CALIBRATION_1; } else { NextCalibrationStep(); } { const CalibrationData& cal = settings_->calibration_data(); float voltage = (argument & 1) == 0 ? 1.0f : 3.0f; for (int i = 0; i < 4; ++i) { output_test_forced_dac_code_[i] = static_cast<uint16_t>( voltage * cal.dac_scale[i] + cal.dac_offset[i]); } } queue_.Touch(); break; case FACTORY_TESTING_FORCE_DAC_CODE: { int channel = argument >> 2; int step = argument & 0x3; if (step == 0) { output_test_forced_dac_code_[channel] = 0xaf35; } else if (step == 1) { output_test_forced_dac_code_[channel] = 0x1d98; } else { CalibrationData* cal = settings_->mutable_calibration_data(); cal->dac_offset[channel] = static_cast<float>( calibration_data_ & 0xffff); cal->dac_scale[channel] = static_cast<float>( calibration_data_ >> 16) * -0.125f; output_test_forced_dac_code_[channel] = static_cast<uint16_t>(cal->dac_scale[channel] + cal->dac_offset[channel]); settings_->SavePersistentData(); } } break; case FACTORY_TESTING_WRITE_CALIBRATION_DATA_NIBBLE: calibration_data_ <<= 4; calibration_data_ |= argument & 0xf; break; } return reply; } } // namespace marbles
Report a bug