Files

copied
Last update 2 years 1 month by Gianpaolo Macario
Filesfirmwarehackrf_usb
..
CMakeLists.txt
hackrf_usb.c
sgpio_m0.s
usb_api_board_info.c
usb_api_board_info.h
usb_api_cpld.c
usb_api_cpld.h
usb_api_m0_state.c
usb_api_m0_state.h
usb_api_operacake.c
usb_api_operacake.h
usb_api_register.c
usb_api_register.h
usb_api_spiflash.c
usb_api_spiflash.h
usb_api_sweep.c
usb_api_sweep.h
usb_api_transceiver.c
usb_api_transceiver.h
usb_api_ui.c
usb_api_ui.h
usb_bulk_buffer.h
usb_descriptor.c
usb_descriptor.h
usb_device.c
usb_device.h
usb_endpoint.c
usb_endpoint.h
usb_api_sweep.c
/* * Copyright 2016-2022 Great Scott Gadgets <info@greatscottgadgets.com> * Copyright 2016 Mike Walters, Dominic Spill * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "usb_api_sweep.h" #include "usb_queue.h" #include <stddef.h> #include <hackrf_core.h> #include "usb_api_transceiver.h" #include "usb_bulk_buffer.h" #include "usb_api_m0_state.h" #include "tuning.h" #include "usb_endpoint.h" #include "streaming.h" #include <libopencm3/lpc43xx/m4/nvic.h> #define MIN(x, y) ((x) < (y) ? (x) : (y)) #define MAX(x, y) ((x) > (y) ? (x) : (y)) #define FREQ_GRANULARITY 1000000 #define MAX_RANGES 10 #define THROWAWAY_BUFFERS 2 static uint64_t sweep_freq; static uint16_t frequencies[MAX_RANGES * 2]; static unsigned char data[9 + MAX_RANGES * 2 * sizeof(frequencies[0])]; static uint16_t num_ranges = 0; static uint32_t dwell_blocks = 0; static uint32_t step_width = 0; static uint32_t offset = 0; static enum sweep_style style = LINEAR; /* Do this before starting sweep mode with request_transceiver_mode(). */ usb_request_status_t usb_vendor_request_init_sweep( usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage) { uint32_t num_bytes; int i; if (stage == USB_TRANSFER_STAGE_SETUP) { num_bytes = (endpoint->setup.index << 16) | endpoint->setup.value; dwell_blocks = num_bytes / 0x4000; if (1 > dwell_blocks) { return USB_REQUEST_STATUS_STALL; } num_ranges = (endpoint->setup.length - 9) / (2 * sizeof(frequencies[0])); if ((1 > num_ranges) || (MAX_RANGES < num_ranges)) { return USB_REQUEST_STATUS_STALL; } usb_transfer_schedule_block( endpoint->out, &data, endpoint->setup.length, NULL, NULL); } else if (stage == USB_TRANSFER_STAGE_DATA) { step_width = ((uint32_t) (data[3]) << 24) | ((uint32_t) (data[2]) << 16) | ((uint32_t) (data[1]) << 8) | data[0]; if (1 > step_width) { return USB_REQUEST_STATUS_STALL; } offset = ((uint32_t) (data[7]) << 24) | ((uint32_t) (data[6]) << 16) | ((uint32_t) (data[5]) << 8) | data[4]; style = data[8]; if (INTERLEAVED < style) { return USB_REQUEST_STATUS_STALL; } for (i = 0; i < (num_ranges * 2); i++) { frequencies[i] = ((uint16_t) (data[10 + i * 2]) << 8) + data[9 + i * 2]; } sweep_freq = (uint64_t) frequencies[0] * FREQ_GRANULARITY; set_freq(sweep_freq + offset); usb_transfer_schedule_ack(endpoint->in); } return USB_REQUEST_STATUS_OK; } void sweep_bulk_transfer_complete(void* user_data, unsigned int bytes_transferred) { (void) user_data; (void) bytes_transferred; // For each buffer transferred, we need to bump the count by three buffers // worth of data, to allow for the discarded buffers. m0_state.m4_count += 3 * 0x4000; } void sweep_mode(uint32_t seq) { // Sweep mode is implemented using timed M0 operations, as follows: // // 0. M4 initially puts the M0 into RX mode, with an m0_count threshold // of 16K and a next mode of WAIT. // // 1. M4 spins until the M0 switches to WAIT mode. // // 2. M0 captures one 16K block of samples, and switches to WAIT mode. // // 3. M4 sees the mode change, advances the m0_count target by 32K, and // sets next mode to RX. // // 4. M4 adds the sweep metadata at the start of the block and // schedules a bulk transfer for the block. // // 5. M4 retunes - this takes about 760us worst-case, so should be // complete before the M0 goes back to RX. // // 6. M4 spins until the M0 mode changes to RX, then advances the // m0_count limit by 16K and sets the next mode to WAIT. // // 7. Process repeats from step 1. unsigned int blocks_queued = 0; unsigned int phase = 0; bool odd = true; uint16_t range = 0; uint8_t* buffer; transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP); // Set M0 to RX first buffer, then wait. m0_state.threshold = 0x4000; m0_state.next_mode = M0_MODE_WAIT; baseband_streaming_enable(&sgpio_config); while (transceiver_request.seq == seq) { // Wait for M0 to finish receiving a buffer. while (m0_state.active_mode != M0_MODE_WAIT) { if (transceiver_request.seq != seq) { goto end; } } // Set M0 to switch back to RX after two more buffers. m0_state.threshold += 0x8000; m0_state.next_mode = M0_MODE_RX; // Write metadata to buffer. buffer = &usb_bulk_buffer[phase * 0x4000]; *buffer = 0x7f; *(buffer + 1) = 0x7f; *(buffer + 2) = sweep_freq & 0xff; *(buffer + 3) = (sweep_freq >> 8) & 0xff; *(buffer + 4) = (sweep_freq >> 16) & 0xff; *(buffer + 5) = (sweep_freq >> 24) & 0xff; *(buffer + 6) = (sweep_freq >> 32) & 0xff; *(buffer + 7) = (sweep_freq >> 40) & 0xff; *(buffer + 8) = (sweep_freq >> 48) & 0xff; *(buffer + 9) = (sweep_freq >> 56) & 0xff; // Set up IN transfer of buffer. usb_transfer_schedule_block( &usb_endpoint_bulk_in, buffer, 0x4000, sweep_bulk_transfer_complete, NULL); // Use other buffer next time. phase = (phase + 1) % 2; if (++blocks_queued == dwell_blocks) { // Calculate next sweep frequency. if (INTERLEAVED == style) { if (!odd && ((sweep_freq + step_width) >= ((uint64_t) frequencies[1 + range * 2] * FREQ_GRANULARITY))) { range = (range + 1) % num_ranges; sweep_freq = (uint64_t) frequencies[range * 2] * FREQ_GRANULARITY; } else { if (odd) { sweep_freq += step_width / 4; } else { sweep_freq += 3 * step_width / 4; } } odd = !odd; } else { if ((sweep_freq + step_width) >= ((uint64_t) frequencies[1 + range * 2] * FREQ_GRANULARITY)) { range = (range + 1) % num_ranges; sweep_freq = (uint64_t) frequencies[range * 2] * FREQ_GRANULARITY; } else { sweep_freq += step_width; } } // Retune to new frequency. nvic_disable_irq(NVIC_USB0_IRQ); set_freq(sweep_freq + offset); nvic_enable_irq(NVIC_USB0_IRQ); blocks_queued = 0; } // Wait for M0 to resume RX. while (m0_state.active_mode != M0_MODE_RX) { if (transceiver_request.seq != seq) { goto end; } } // Set M0 to switch back to WAIT after filling next buffer. m0_state.threshold += 0x4000; m0_state.next_mode = M0_MODE_WAIT; } end: transceiver_shutdown(); }
Report a bug