Files
Scanning the repository...
Last update 5 years 1 month
by Charles Julian Knight
Files_oldclassHW3 | |
---|---|
.. | |
HW3.tex | |
p3.jpg |
HW3.tex\documentclass[12pt]{article} \usepackage{amssymb, amsthm, graphics, graphicx} \usepackage{amsmath} %these are initial settings. Ron recommended them, so that's just what I use. \textwidth = 6.5 in \textheight = 9 in \oddsidemargin = 0.0 in \evensidemargin = 0.0 in \topmargin = -.75in \parskip = 0.2 in \parindent = 15 pt \renewcommand{\baselinestretch}{1.25} \providecommand{\e}[1]{\ensuremath{\times 10^{#1}}} \providecommand{\degree}[0]{\ensuremath{^{\circ}}} \providecommand{\ah}[1]{\ensuremath{\hat{a}_{#1}}} \providecommand{\ahx}[0]{\ensuremath{\ah{x}}} \providecommand{\ahy}[0]{\ensuremath{\ah{y}}} \providecommand{\ahz}[0]{\ensuremath{\ah{z}}} \providecommand{\pfs}[0]{\ensuremath{\epsilon_{0}}} %permittivity of free space => 1/(36\pi) \e{-9} %\providecommand{\vec}[1]{\ensuremath{\textbf{#1}}} %vector notation ACTUALLY \vec is _real_ vector notation \providecommand{\ohm}[0]{\ensuremath{\Omega}} \newtheorem*{prob}{Problem} \begin{document} \begin{flushright} \textbf{Charles Julian Knight}\\ ECE4893\\ \today \end{flushright} \begin{center} \huge HW 3 \end{center} \begin{prob}[1.a]{ }\end{prob} With the 4066 open, the non-inverting input of IC2 is at \[\frac{24k}{24k+4.7M}15V \approx .076V\] Let's call this $V_m$. We've got two inputs into the inverting amp configuration, so \[\frac{V_m - V_{saw}}{11k} = \frac{V_{tri}-V_m}{22k} + \frac{-15 - V_m}{82k}\] \[V_{saw} = -11k \left( \frac{V_{tri}-V_m}{22k} + \frac{-15 - V_m}{82k}\right) + V_m \] \[ = 1.63V_m - 0.5V_{tri}+2.01V = 2.13V - 0.5V_{tri}\] \begin{prob}[1.b]{ }\end{prob} When the 4066 is closed, $V_m$ becomes dependant on $V_{tri}$ also. \[V_m = .076 + \frac{56k}{56k+16k}V_{tri} = .076 + .777V_{tri}\] \[V_{saw} =1.63(.076 + .777V_{tri}) - 0.5V_{tri}+2.01V = 2.14V + .77V_{tri} \] \begin{prob}[3]{ }\end{prob} If we apply the ideal opamp rules, what we have is an RC network like this: \begin{center} \includegraphics[width=3in]{p3.jpg} \end{center} We can look at $V_{out}$ as the cascade of two impedance ladders. Let's let $Z_1 = 1/sC_1$ and $Z_2=1/sC_2$. \[V_{out} = \left( \frac{R||(Z_2+R)}{Z_1+R||(Z_2+R)} \right)\left( \frac{Z_2}{R+Z_2} \right)V_{in}\] %\[V_{out} = \left(\frac{R}{\frac{1}{sC_1}+R}\right)\left(\frac{\frac{1}{sC_2}}{\frac{1}{sC_2}+R}\right)V_{in}\] %\[T(s) = \frac{V_{out}}{V_{in}} = \frac{ \frac{R}{sC_2} }{ \frac{1}{s^2 C_1 C_2} + \frac{R}{sC_1}+ \frac{R}{sC_2} +R^2 }\] %Multiplyng top and bottom by $\frac{sC_2}{R}$, If we dump this into Wolfram$|$Alpha, this simplifies to \[T(s) = \frac{RZ_2}{R^2 + RZ_2 + 2RZ_1 + Z_1Z_2}\] If we divide the numerator and denomonator by $RZ_2$, \[T(s) = \frac{1}{R/Z_2 + 1 + 2Z_1/Z_2 + Z_1/R} = \frac{1}{RC_2s + \frac{1}{RC_1s} + 2C_1/C_2 + 1}\] \[= \frac{s}{RC_2s^2 + (2C_1/C_2 + 1)s+ \frac{1}{RC_1}}\] This looks like a bandpass filter as expected. This makes sense, because the signal goes through the capacitor in the first stage (a high pass pattern). \end{document}