Files
-
blinds / hardware_design / pcb / blinds_v60.brd
-
blinds / hardware_design / pcb / blinds_v60.sch
-
braids / hardware_design / pcb / braids_v50.brd
-
braids / hardware_design / pcb / braids_v50.sch
-
branches / hardware_design / pcb / branches_v40.brd
-
branches / hardware_design / pcb / branches_v40.sch
-
clouds / hardware_design / pcb / clouds_v30.brd
-
clouds / hardware_design / pcb / clouds_v30.sch
-
ears / hardware_design / panel / ears_panel_v30.brd
-
ears / hardware_design / panel / ears_panel_v30.sch
-
ears / hardware_design / pcb / ears_v40.brd
-
ears / hardware_design / pcb / ears_v40.sch
-
edges / hardware_design / pcb / edges_expander_v01.brd
-
edges / hardware_design / pcb / edges_expander_v01.sch
-
edges / hardware_design / pcb / edges_v20.brd
-
edges / hardware_design / pcb / edges_v20.sch
-
elements / hardware_design / pcb / elements_v02.brd
-
elements / hardware_design / pcb / elements_v02.sch
-
frames / hardware_design / pcb / frames_v03.brd
-
frames / hardware_design / pcb / frames_v03.sch
-
grids / hardware_design / pcb / grids_v02.brd
-
grids / hardware_design / pcb / grids_v02.sch
-
kinks / hardware_design / pcb / kinks_v41.brd
-
kinks / hardware_design / pcb / kinks_v41.sch
-
links / hardware_design / pcb / links_v40.brd
-
links / hardware_design / pcb / links_v40.sch
-
marbles / hardware_design / pcb / marbles_v70.brd
-
marbles / hardware_design / pcb / marbles_v70.sch
-
peaks / hardware_design / pcb / peaks_v30.brd
-
peaks / hardware_design / pcb / peaks_v30.sch
-
plaits / hardware_design / pcb / plaits_v50.brd
-
plaits / hardware_design / pcb / plaits_v50.sch
-
rings / hardware_design / pcb / rings_v30.brd
-
rings / hardware_design / pcb / rings_v30.sch
-
ripples / hardware_design / pcb / ripples_v40.brd
-
ripples / hardware_design / pcb / ripples_v40.sch
-
shades / hardware_design / pcb / shades_v30.brd
-
shades / hardware_design / pcb / shades_v30.sch
-
shelves / hardware_design / pcb / shelves_expander_v10.brd
-
shelves / hardware_design / pcb / shelves_expander_v10.sch
-
shelves / hardware_design / pcb / shelves_v05.brd
-
shelves / hardware_design / pcb / shelves_v05.sch
-
stages / hardware_design / pcb / stages_v70.brd
-
stages / hardware_design / pcb / stages_v70.sch
-
streams / hardware_design / pcb / streams_v02_bargraph.brd
-
streams / hardware_design / pcb / streams_v02_bargraph.sch
-
streams / hardware_design / pcb / streams_v05.brd
-
streams / hardware_design / pcb / streams_v05.sch
-
tides / hardware_design / pcb / tides_v40.brd
-
tides / hardware_design / pcb / tides_v40.sch
-
veils / hardware_design / pcb / veils_v40.brd
-
veils / hardware_design / pcb / veils_v40.sch
-
volts / hardware_design / pcb / volts_v01.brd
-
volts / hardware_design / pcb / volts_v01.sch
-
warps / hardware_design / pcb / warps_v30.brd
-
warps / hardware_design / pcb / warps_v30.sch
-
yarns / hardware_design / pcb / yarns_v03.brd
-
yarns / hardware_design / pcb / yarns_v03.sch
Last update 6 years 1 month
by
Olivier Gillet
ui.cc// Copyright 2013 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // User interface. #include "streams/ui.h" #include <algorithm> #include "stmlib/system/storage.h" #include "stmlib/system/system_clock.h" #include "streams/drivers/adc.h" #include "streams/processor.h" namespace streams { const int32_t kLongPressDuration = 1000; using namespace std; using namespace stmlib; Storage<0x801fc00, 4> ui_settings_storage; void Ui::Init(Adc* adc, CvScaler* cv_scaler, Processor* processor) { leds_.Init(); switches_.Init(); adc_ = adc; cv_scaler_ = cv_scaler; processor_ = processor; fill(&pot_value_[0], &pot_value_[kNumPots], 0); fill(&pot_threshold_[0], &pot_threshold_[kNumPots], 0); if (!ui_settings_storage.ParsimoniousLoad(&ui_settings_, &version_token_)) { // Flash is not formatted. Initialize. for (uint8_t i = 0; i < kNumChannels; ++i) { ui_settings_.function[i] = PROCESSOR_FUNCTION_ENVELOPE; ui_settings_.alternate[i] = false; } ui_settings_.monitor_mode = MONITOR_MODE_OUTPUT; ui_settings_.linked = false; } // Initialize from settings in flash. monitor_mode_ = static_cast<MonitorMode>(ui_settings_.monitor_mode); for (uint8_t i = 0; i < kNumChannels; ++i) { meter_[i].Init(); processor_[i].set_alternate(ui_settings_.alternate[i]); processor_[i].set_linked(ui_settings_.linked); processor_[i].set_function( static_cast<ProcessorFunction>(ui_settings_.function[i])); display_mode_[i] = DISPLAY_MODE_MONITOR; } secret_handshake_counter_ = 0; factory_testing_ = switches_.pressed_immediate(SWITCH_MONITOR); } void Ui::SaveState() { ui_settings_.monitor_mode = monitor_mode_; ui_settings_.linked = processor_[0].linked(); ui_settings_.function[0] = processor_[0].function(); ui_settings_.function[1] = processor_[1].function(); ui_settings_.alternate[0] = processor_[0].alternate(); ui_settings_.alternate[1] = processor_[1].alternate(); ui_settings_storage.ParsimoniousSave(ui_settings_, &version_token_); } void Ui::PaintAdaptive(uint8_t channel, int32_t sample, int32_t gain) { meter_[channel].Process(sample); if (meter_[channel].cv()) { sample = sample * lut_2164_gain[-gain >> 9] >> 15; leds_.PaintCv(channel, sample * 5 >> 2); } else { leds_.PaintPositiveBar(channel, wav_db[meter_[channel].peak() >> 7] + gain); } } void Ui::PaintMonitor(uint8_t channel) { switch (monitor_mode_) { case MONITOR_MODE_EXCITE_IN: PaintAdaptive(channel, cv_scaler_->excite_sample(channel), 0); break; case MONITOR_MODE_AUDIO_IN: PaintAdaptive(channel, cv_scaler_->audio_sample(channel), 0); break; case MONITOR_MODE_VCA_CV: leds_.PaintPositiveBar(channel, 32768 + cv_scaler_->gain_sample(channel)); break; case MONITOR_MODE_OUTPUT: if (processor_[channel].function() == PROCESSOR_FUNCTION_COMPRESSOR) { leds_.PaintNegativeBar(channel, processor_[channel].gain_reduction()); } else { PaintAdaptive( channel, cv_scaler_->audio_sample(channel), cv_scaler_->gain_sample(channel)); } break; default: break; } } void Ui::PaintTestStatus() { int32_t value = 0; value += pot_value_[0] - 32768; value += pot_value_[1] - 32768; value += pot_value_[2] - 32768; value += pot_value_[3] - 32768; value -= cv_scaler_->excite_sample(0) > 0 ? 0 : cv_scaler_->excite_sample(0); value -= cv_scaler_->excite_sample(1) > 0 ? 0 : cv_scaler_->excite_sample(1); value -= cv_scaler_->gain_sample(0); value -= cv_scaler_->gain_sample(1); value -= cv_scaler_->audio_sample(0) - 12000; value -= cv_scaler_->audio_sample(1) - 12000; if (switches_.pressed(0)) value = -32767; if (switches_.pressed(1)) value = 32767; CONSTRAIN(value, -32767, 32767); if (value < 12288 && value > -12288) value = 0; uint8_t r = value >= 0 ? 0 : ((-1 - value) >> 7); uint8_t g = value > 0 ? (value >> 7) : 0; for (uint8_t i = 0; i < 8; ++i) { leds_.set(i, r, g); } } void Ui::PaintLeds() { leds_.Clear(); if (calibrating_) { for (uint8_t i = 0; i < kNumChannels; ++i) { uint8_t red, green; if (show_offset_level_ & (1 << i)) { int32_t gain_sample = cv_scaler_->raw_gain_sample(i); bool nulled = gain_sample > 59000; green = nulled ? 255 : 0; red = nulled ? 0 : 255; } else { red = 0; green = 255; } uint8_t pattern = i == 0 ? 255 : 9; for (uint8_t j = 0; j < 4; ++j) { bool on = (pattern & (1 << j)) != 0; leds_.set(i * 4 + j, on ? red : 0, on ? green : 0); } } return; } if (factory_testing_) { PaintTestStatus(); return; } for (uint8_t i = 0; i < kNumChannels; ++i) { uint8_t bank = i * 4; switch (display_mode_[i]) { case DISPLAY_MODE_FUNCTION: { bool alternate = processor_[i].alternate(); uint8_t intensity = 255; if (processor_[i].linked()) { uint8_t phase = system_clock.milliseconds() >> 1; phase += i * 128; phase = phase < 128 ? phase : (255 - phase); intensity = (phase * 224 >> 7) + 32; intensity = intensity * intensity >> 8; } uint8_t function = processor_[i].function(); if (function == PROCESSOR_FUNCTION_FILTER_CONTROLLER) { for (uint8_t j = 0; j < 4; ++j) { leds_.set(bank + j, alternate ? intensity : 0, alternate ? 0 : intensity); } } else if (function < PROCESSOR_FUNCTION_LORENZ_GENERATOR) { leds_.set( bank + function, alternate ? intensity : 0, alternate ? 0 : intensity); } else { uint8_t index = (processor_[i].last_gain() >> 4) * 5 >> 4; if (index > 3) index = 3; int16_t color = processor_[i].last_frequency(); color = color - 128; color *= 2; if (color < 0) { if (color < -127) color = -127; leds_.set(bank + index, 255 + (color * 2), 255); } else { if (color > 127) color = 127; leds_.set(bank + index, 255, 255 - (color * 2)); } } } break; case DISPLAY_MODE_MONITOR_FUNCTION: { uint8_t position = static_cast<uint8_t>(monitor_mode_); leds_.set(position * 2, 255, 0); leds_.set(position * 2 + 1, 255, 0); } break; case DISPLAY_MODE_MONITOR: PaintMonitor(i); break; } } } void Ui::Poll() { // SysTick is at 4kHz to get a fast bargraph refresh. ++divider_; if ((divider_ & 3) == 0) { system_clock.Tick(); switches_.Debounce(); for (uint8_t i = 0; i < kNumSwitches; ++i) { if (switches_.just_pressed(i)) { queue_.AddEvent(CONTROL_SWITCH, i, 0); press_time_[i] = system_clock.milliseconds(); } if (switches_.pressed(i) && press_time_[i] != 0) { int32_t pressed_time = system_clock.milliseconds() - press_time_[i]; if (pressed_time > kLongPressDuration) { queue_.AddEvent(CONTROL_SWITCH, i, pressed_time); press_time_[i] = 0; } } if (switches_.released(i) && press_time_[i] != 0) { queue_.AddEvent( CONTROL_SWITCH, i, system_clock.milliseconds() - press_time_[i] + 1); press_time_[i] = 0; } } adc_->ScanPots(); for (uint8_t i = 0; i < kNumPots; ++i) { int32_t value = adc_->pot(i); int32_t current_value = pot_value_[i]; if (value >= current_value + pot_threshold_[i] || value <= current_value - pot_threshold_[i] || !pot_threshold_[i]) { Event e; e.control_id = i; e.data = value; queue_.AddEvent(CONTROL_POT, i, e.data); pot_value_[i] = value; pot_threshold_[i] = 256; } } } PaintLeds(); leds_.Write(); } void Ui::FlushEvents() { queue_.Flush(); } void Ui::Link(uint8_t index) { if (processor_[0].linked()) { for (uint8_t i = 0; i < kNumChannels; ++i) { if (i != index) { display_mode_[i] = display_mode_[index]; processor_[i].set_function(processor_[index].function()); processor_[i].set_alternate(processor_[index].alternate()); } } } } void Ui::OnPotMoved(const Event& e) { if (calibrating_) { if ((e.control_id & 1) == 0) { int32_t min = kDefaultOffset >> 1; int32_t max = 3 * min + 256; int32_t value = min + ((max - min) * e.data >> 16); cv_scaler_->set_dac_offset(e.control_id >> 1, value); show_offset_level_ |= (1 << (e.control_id >> 1)); } } else { processor_[0].set_global(e.control_id, e.data); processor_[1].set_global(e.control_id, e.data); processor_[e.control_id >> 1].set_parameter(e.control_id & 1, e.data); } } void Ui::OnSwitchPressed(const Event& e) { if (factory_testing_) { if (e.control_id == SWITCH_MONITOR) { ++secret_handshake_counter_; if (secret_handshake_counter_ == 4) { factory_testing_ = false; } } return; } if (calibrating_) { cv_scaler_->SaveCalibrationData(); calibrating_ = false; show_offset_level_ = 0; return; } // Double press! if ((e.control_id == SWITCH_MODE_1 && press_time_[SWITCH_MODE_2]) || (e.control_id == SWITCH_MODE_2 && press_time_[SWITCH_MODE_1])) { press_time_[SWITCH_MODE_1] = press_time_[SWITCH_MODE_2] = 0; bool linked = !processor_[0].linked(); for (uint8_t i = 0; i < kNumChannels; ++i) { display_mode_[i] = DISPLAY_MODE_FUNCTION; processor_[i].set_linked(linked); } Link(1 - e.control_id); SaveState(); return; } switch (e.control_id) { case SWITCH_MONITOR: { if (display_mode_[0] == DISPLAY_MODE_MONITOR && display_mode_[1] == DISPLAY_MODE_MONITOR) { display_mode_[0] = display_mode_[1] = DISPLAY_MODE_MONITOR_FUNCTION; } else if (display_mode_[0] == DISPLAY_MODE_MONITOR_FUNCTION && display_mode_[1] == DISPLAY_MODE_MONITOR_FUNCTION) { monitor_mode_ = static_cast<MonitorMode>(monitor_mode_ + 1); if (monitor_mode_ == MONITOR_MODE_LAST) { monitor_mode_ = static_cast<MonitorMode>(0); } SaveState(); } else { display_mode_[0] = display_mode_[1] = DISPLAY_MODE_MONITOR; } } break; default: break; } } void Ui::OnSwitchReleased(const Event& e) { if (factory_testing_) { return; } // Detect secret handshake for easter egg... uint8_t secret_handshake_code = e.control_id; secret_handshake_code |= e.data >= kLongPressDuration ? 2 : 0; if ((secret_handshake_counter_ & 3) == secret_handshake_code) { ++secret_handshake_counter_; if (secret_handshake_counter_ == 16) { for (uint8_t i = 0; i < kNumChannels; ++i) { processor_[i].set_alternate(false); processor_[i].set_function(PROCESSOR_FUNCTION_LORENZ_GENERATOR); } SaveState(); secret_handshake_counter_ = 0; return; } } else { secret_handshake_counter_ = 0; } if (e.data >= kLongPressDuration) { // Handle long presses. switch (e.control_id) { case SWITCH_MONITOR: calibrating_ = cv_scaler_->can_calibrate(); if (calibrating_) { cv_scaler_->CaptureAdcOffsets(); show_offset_level_ = 0; } break; case SWITCH_MODE_1: case SWITCH_MODE_2: { processor_[e.control_id].set_alternate( !processor_[e.control_id].alternate()); if (processor_[e.control_id].function() > PROCESSOR_FUNCTION_COMPRESSOR) { processor_[e.control_id].set_function(PROCESSOR_FUNCTION_ENVELOPE); } display_mode_[e.control_id] = DISPLAY_MODE_FUNCTION; int32_t other = 1 - e.control_id; if (display_mode_[other] == DISPLAY_MODE_MONITOR_FUNCTION) { display_mode_[other] = DISPLAY_MODE_MONITOR; } Link(e.control_id); SaveState(); } break; } } else { switch (e.control_id) { case SWITCH_MODE_1: case SWITCH_MODE_2: { if (display_mode_[e.control_id] == DISPLAY_MODE_FUNCTION) { ProcessorFunction index = processor_[e.control_id].function(); index = static_cast<ProcessorFunction>(index + 1); ProcessorFunction limit = processor_[e.control_id].alternate() ? PROCESSOR_FUNCTION_FILTER_CONTROLLER : PROCESSOR_FUNCTION_COMPRESSOR; if (index > limit) { index = static_cast<ProcessorFunction>(0); } processor_[e.control_id].set_function(index); SaveState(); } else { display_mode_[e.control_id] = DISPLAY_MODE_FUNCTION; int32_t other = 1 - e.control_id; if (display_mode_[other] == DISPLAY_MODE_MONITOR_FUNCTION) { display_mode_[other] = DISPLAY_MODE_MONITOR; } } Link(e.control_id); } break; default: break; } } } void Ui::DoEvents() { bool refresh = false; while (queue_.available()) { Event e = queue_.PullEvent(); if (e.control_type == CONTROL_SWITCH) { if (e.data == 0) { OnSwitchPressed(e); } else { OnSwitchReleased(e); } } else if (e.control_type == CONTROL_POT) { OnPotMoved(e); } refresh = true; } if (queue_.idle_time() > 1000) { queue_.Touch(); if (display_mode_[0] == DISPLAY_MODE_MONITOR_FUNCTION && display_mode_[1] == DISPLAY_MODE_MONITOR_FUNCTION) { display_mode_[0] = display_mode_[1] = DISPLAY_MODE_MONITOR; } refresh = true; } // Recompute processor parameters if necessary. if (refresh) { for (uint8_t i = 0; i < kNumChannels; ++i) { processor_[i].Configure(); } } } } // namespace streams