Files

copied
Last update 6 years 1 month by Olivier Gillet
Filesringsdrivers
..
adc.cc
adc.h
codec.cc
codec.h
debug_pin.h
debug_port.cc
debug_port.h
leds.cc
leds.h
normalization_probe.h
switches.cc
switches.h
system.cc
system.h
trigger_input.cc
trigger_input.h
version.h
adc.cc
// Copyright 2015 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Driver for ADC1 - used for scanning CVs, and ADC2 - used for scanning pots. #include "rings/drivers/adc.h" #include <stm32f4xx_conf.h> namespace rings { /* static */ uint8_t Adc::addresses_[ADC_CHANNEL_NUM_MUXED] = { 7, // ADC_CHANNEL_POT_BRIGHTNESS, 5, // ADC_CHANNEL_POT_DAMPING, 3, // ADC_CHANNEL_POT_POSITION, 4, // ADC_CHANNEL_ATTENUVERTER_FREQUENCY, 1, // ADC_CHANNEL_ATTENUVERTER_STRUCTURE, 6, // ADC_CHANNEL_ATTENUVERTER_BRIGHTNESS, 0, // ADC_CHANNEL_ATTENUVERTER_DAMPING, 2, // ADC_CHANNEL_ATTENUVERTER_POSITION, }; void Adc::Init() { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE); DMA_InitTypeDef dma_init; ADC_CommonInitTypeDef adc_common_init; ADC_InitTypeDef adc_init; GPIO_InitTypeDef gpio_init; gpio_init.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1; gpio_init.GPIO_Pin |= GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; gpio_init.GPIO_Mode = GPIO_Mode_AN; GPIO_Init(GPIOA, &gpio_init); gpio_init.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; gpio_init.GPIO_Mode = GPIO_Mode_AN; GPIO_Init(GPIOC, &gpio_init); // Configure the address lines for the MUX. gpio_init.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; gpio_init.GPIO_Mode = GPIO_Mode_OUT; gpio_init.GPIO_OType = GPIO_OType_PP; gpio_init.GPIO_Speed = GPIO_Speed_2MHz; gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOB, &gpio_init); GPIO_ResetBits(GPIOB, GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); // Use DMA to automatically copy ADC data register to values_ buffer. dma_init.DMA_Channel = DMA_Channel_0; dma_init.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; dma_init.DMA_Memory0BaseAddr = (uint32_t)&values_[0]; dma_init.DMA_DIR = DMA_DIR_PeripheralToMemory; dma_init.DMA_BufferSize = ADC_CHANNEL_NUM_DIRECT; dma_init.DMA_PeripheralInc = DMA_PeripheralInc_Disable; dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable; dma_init.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; dma_init.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; dma_init.DMA_Mode = DMA_Mode_Circular; dma_init.DMA_Priority = DMA_Priority_High; dma_init.DMA_FIFOMode = DMA_FIFOMode_Disable; dma_init.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; dma_init.DMA_MemoryBurst = DMA_MemoryBurst_Single; dma_init.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream0, &dma_init); DMA_Cmd(DMA2_Stream0, ENABLE); adc_common_init.ADC_Mode = ADC_Mode_Independent; adc_common_init.ADC_Prescaler = ADC_Prescaler_Div8; adc_common_init.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; adc_common_init.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&adc_common_init); adc_init.ADC_Resolution = ADC_Resolution_12b; adc_init.ADC_ScanConvMode = ENABLE; adc_init.ADC_ContinuousConvMode = DISABLE; adc_init.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; adc_init.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; adc_init.ADC_DataAlign = ADC_DataAlign_Left; adc_init.ADC_NbrOfConversion = ADC_CHANNEL_NUM_DIRECT; ADC_Init(ADC1, &adc_init); adc_init.ADC_Resolution = ADC_Resolution_12b; adc_init.ADC_ScanConvMode = DISABLE; adc_init.ADC_ContinuousConvMode = DISABLE; adc_init.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; adc_init.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; adc_init.ADC_DataAlign = ADC_DataAlign_Left; adc_init.ADC_NbrOfConversion = 1; ADC_Init(ADC2, &adc_init); // 168M / 2 / 8 / (9 x (480 + 5) + 0 x (144 + 5)) = 2.4kHz. // ADC_CHANNEL_CV_FREQUENCY, // ADC_CHANNEL_CV_STRUCTURE, // ADC_CHANNEL_CV_BRIGHTNESS, // ADC_CHANNEL_CV_DAMPING, // ADC_CHANNEL_CV_POSITION, // ADC_CHANNEL_CV_STRENGTH, // ADC_CHANNEL_CV_V_OCT, // ADC_CHANNEL_POT_FREQUENCY, // ADC_CHANNEL_POT_STRUCTURE, ADC_RegularChannelConfig(ADC1, ADC_Channel_4, 1, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 2, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 3, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 4, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 5, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 6, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 7, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 8, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_480Cycles); ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_Cmd(ADC2, ENABLE); ADC_DMACmd(ADC1, ENABLE); index_ = ADC_CHANNEL_NUM_MUXED - 1; last_read_ = 0; state_ = false; Convert(); } void Adc::DeInit() { DMA_Cmd(DMA2_Stream0, DISABLE); ADC_DMARequestAfterLastTransferCmd(ADC1, DISABLE); ADC_Cmd(ADC1, DISABLE); ADC_Cmd(ADC2, DISABLE); ADC_DMACmd(ADC1, DISABLE); ADC_DeInit(); } void Adc::Convert() { ADC_SoftwareStartConv(ADC1); if (state_) { // Read the value from the previous conversion. values_[ADC_CHANNEL_POT_BRIGHTNESS + index_] = ADC2->DR; last_read_ = index_; ++index_; if (index_ >= ADC_CHANNEL_NUM_MUXED) { index_ = 0; } uint8_t address = addresses_[index_]; // Write the mux address. GPIO_WriteBit(GPIOB, GPIO_Pin_7, static_cast<BitAction>(address & 1)); GPIO_WriteBit(GPIOB, GPIO_Pin_6, static_cast<BitAction>(address & 2)); GPIO_WriteBit(GPIOB, GPIO_Pin_5, static_cast<BitAction>(address & 4)); } else { ADC_SoftwareStartConv(ADC2); } state_ = !state_; } } // namespace rings
Report a bug