Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesringsbootloader
..
__init__.py
bootloader.cc
makefile
bootloader.cc
// Copyright 2015 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. #include "stmlib/dsp/dsp.h" #include "stmlib/system/bootloader_utils.h" #include "stmlib/system/system_clock.h" #include "rings/drivers/adc.h" #include "rings/drivers/codec.h" #include "rings/drivers/leds.h" #include "rings/drivers/switches.h" #include "rings/drivers/system.h" #include "rings/drivers/version.h" #include "rings/meter.h" #include "stm_audio_bootloader/qpsk/packet_decoder.h" #include "stm_audio_bootloader/qpsk/demodulator.h" #include <cstring> using namespace rings; using namespace stmlib; using namespace stm_audio_bootloader; const double kSampleRate = 48000.0; const double kModulationRate = 6000.0; const double kBitRate = 12000.0; const uint32_t kStartAddress = 0x08008000; Adc adc; Codec codec; Demodulator demodulator; Leds leds; Meter meter; PacketDecoder decoder; Switches switches; int __errno; // Default interrupt handlers. extern "C" { void NMI_Handler() { } void HardFault_Handler() { while (1); } void MemManage_Handler() { while (1); } void BusFault_Handler() { while (1); } void UsageFault_Handler() { while (1); } void SVC_Handler() { } void DebugMon_Handler() { } void PendSV_Handler() { } } extern "C" { enum UiState { UI_STATE_WAITING, UI_STATE_RECEIVING, UI_STATE_ERROR, UI_STATE_WRITING }; volatile bool switch_released = false; volatile UiState ui_state; volatile int32_t gain = 4096; volatile uint8_t pot_index = 0; void UpdateLeds() { switch (ui_state) { case UI_STATE_WAITING: { // Alternate orange. bool on = system_clock.milliseconds() & 128; leds.set(0, on, on); leds.set(1, !on, !on); } break; case UI_STATE_RECEIVING: { // First LED: fast green. Second LED: peak-meter. int32_t peak = meter.peak(); bool on = system_clock.milliseconds() & 32; uint8_t pwm = system_clock.milliseconds() & 15; leds.set(0, false, on); if (peak < 8192) { leds.set(1, false, (peak >> 9) >= pwm); } else if (peak < 16384) { leds.set(1, ((peak - 8192) >> 9) >= pwm, true); } else if (peak < 16384 + 8192) { leds.set(1, true, ((peak - 16384 - 8192) >> 9) < pwm); } else { leds.set(1, true, false); } } break; case UI_STATE_ERROR: { // Alternate red. bool on = system_clock.milliseconds() & 64; leds.set(0, on, 0); leds.set(1, !on, 0); } break; case UI_STATE_WRITING: { // Full orange. leds.set(0, true, true); leds.set(1, true, true); } break; } leds.Write(); } void SysTick_Handler() { system_clock.Tick(); adc.Convert(); int32_t gain_raw = adc.value(ADC_CHANNEL_POT_FREQUENCY) >> 1; gain = gain_raw * gain_raw >> 16; switches.Debounce(); if (switches.released(0)) { switch_released = true; } UpdateLeds(); } } size_t discard_samples = 8000; void FillBuffer(Codec::Frame* input, Codec::Frame* output, size_t n) { for (size_t i = 0; i < n; ++i) { input[i].r = Clip16(static_cast<int32_t>(input[i].r) * gain >> 12); } meter.Process(input, n); while (n--) { if (!discard_samples) { demodulator.PushSample(2048 + (input->r >> 4)); } else { --discard_samples; } *output = *input; ++output; ++input; } } static size_t current_address; static uint16_t packet_index; static uint32_t kSectorBaseAddress[] = { 0x08000000, 0x08004000, 0x08008000, 0x0800C000, 0x08010000, 0x08020000, 0x08040000, 0x08060000, 0x08080000, 0x080A0000, 0x080C0000, 0x080E0000 }; const uint32_t kBlockSize = 16384; const uint16_t kPacketsPerBlock = kBlockSize / kPacketSize; uint8_t rx_buffer[kBlockSize]; void ProgramPage(const uint8_t* data, size_t size) { FLASH_Unlock(); FLASH_ClearFlag( FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_PGSERR); for (int32_t i = 0; i < 12; ++i) { if (current_address == kSectorBaseAddress[i]) { FLASH_EraseSector(i * 8, VoltageRange_3); } } const uint32_t* words = static_cast<const uint32_t*>( static_cast<const void*>(data)); for (size_t written = 0; written < size; written += 4) { FLASH_ProgramWord(current_address, *words++); current_address += 4; } } void Init() { System sys; Version version; sys.Init(false); leds.Init(); meter.Init(48000); switches.Init(); version.Init(); if (!codec.Init(!version.revised(), 48000)) { } if (!codec.Start(24, &FillBuffer)) { } sys.StartTimers(); adc.Init(); } void InitializeReception() { decoder.Init(20000); demodulator.Init( kModulationRate / kSampleRate * 4294967296.0, kSampleRate / kModulationRate, 2.0 * kSampleRate / kBitRate); demodulator.SyncCarrier(true); decoder.Reset(); current_address = kStartAddress; packet_index = 0; ui_state = UI_STATE_WAITING; } int main(void) { InitializeReception(); Init(); bool exit_updater = !switches.pressed_immediate(0); while (!exit_updater) { bool error = false; if (demodulator.state() == DEMODULATOR_STATE_OVERFLOW) { error = true; } else { demodulator.ProcessAtLeast(32); } while (demodulator.available() && !error && !exit_updater) { uint8_t symbol = demodulator.NextSymbol(); PacketDecoderState state = decoder.ProcessSymbol(symbol); switch (state) { case PACKET_DECODER_STATE_OK: { ui_state = UI_STATE_RECEIVING; memcpy( rx_buffer + (packet_index % kPacketsPerBlock) * kPacketSize, decoder.packet_data(), kPacketSize); ++packet_index; if ((packet_index % kPacketsPerBlock) == 0) { ui_state = UI_STATE_WRITING; ProgramPage(rx_buffer, kBlockSize); decoder.Reset(); demodulator.SyncCarrier(false); } else { decoder.Reset(); demodulator.SyncDecision(); } } break; case PACKET_DECODER_STATE_ERROR_SYNC: case PACKET_DECODER_STATE_ERROR_CRC: error = true; break; case PACKET_DECODER_STATE_END_OF_TRANSMISSION: exit_updater = true; break; default: break; } } if (error) { ui_state = UI_STATE_ERROR; switch_released = false; while (!switch_released); // Polled in ISR InitializeReception(); } } codec.Stop(); adc.DeInit(); Uninitialize(); JumpTo(kStartAddress); while (1) { } }
Report a bug