Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesplaitsresources
..
__init__.py
lookup_tables.py
resources.py
waves.bin
wavetables.py
lookup_tables.py
#!/usr/bin/python2.5 # # Copyright 2016 Olivier Gillet. # # Author: Olivier Gillet (ol.gillet@gmail.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Lookup table definitions. import scipy.signal import numpy import pylab lookup_tables = [] lookup_tables_i16 = [] lookup_tables_i8 = [] """---------------------------------------------------------------------------- Sine table ----------------------------------------------------------------------------""" WAVETABLE_SIZE = 1024 t = numpy.arange(0.0, WAVETABLE_SIZE + WAVETABLE_SIZE / 4 + 1) / WAVETABLE_SIZE x = numpy.sin(2 * numpy.pi * t) lookup_tables += [('sine', x)] """---------------------------------------------------------------------------- Quantizer for FM frequencies. ----------------------------------------------------------------------------""" fm_frequency_ratios = [ 0.5, 0.5 * 2 ** (16 / 1200.0), numpy.sqrt(2) / 2, numpy.pi / 4, 1.0, 1.0 * 2 ** (16 / 1200.0), numpy.sqrt(2), numpy.pi / 2, 7.0 / 4, 2, 2 * 2 ** (16 / 1200.0), 9.0 / 4, 11.0 / 4, 2 * numpy.sqrt(2), 3, numpy.pi, numpy.sqrt(3) * 2, 4, numpy.sqrt(2) * 3, numpy.pi * 3 / 2, 5, numpy.sqrt(2) * 4, 8] scale = [] for ratio in fm_frequency_ratios: ratio = 12 * numpy.log2(ratio) scale.extend([ratio, ratio, ratio]) target_size = int(2 ** numpy.ceil(numpy.log2(len(scale)))) while len(scale) < target_size: gap = numpy.argmax(numpy.diff(scale)) scale = scale[:gap + 1] + [(scale[gap] + scale[gap + 1]) / 2] + \ scale[gap + 1:] scale.append(scale[-1]) lookup_tables.append( ('fm_frequency_quantizer', scale) ) """---------------------------------------------------------------------------- Waveshaper tables stolen from Tides ----------------------------------------------------------------------------""" WAVESHAPER_SIZE = 128 x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE) linear = x tan = numpy.arctan(8 * numpy.cos(numpy.pi * x)) scale = tan.max() fade_crop = numpy.minimum(1.0, 4.0 - 4.0 * x) bump = (1.0 - numpy.cos(numpy.pi * x * 1.5)) * (1.0 - numpy.cos(numpy.pi * fade_crop)) / 4.5 double_bump = numpy.sin(numpy.pi * x * 1.5) inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi inverse_tan = numpy.arccos(numpy.tan(scale * (1.0 - 2.0 * x)) / 8.0) / numpy.pi def flip(x): x = numpy.array(list(-x[WAVESHAPER_SIZE:0:-1]) + list(x)) return numpy.round((x * 32767.0)).astype(int) lookup_tables_i16.append(('ws_inverse_tan', flip(inverse_tan))) lookup_tables_i16.append(('ws_inverse_sin', flip(inverse_sin))) lookup_tables_i16.append(('ws_linear', flip(linear))) lookup_tables_i16.append(('ws_bump', flip(bump))) lookup_tables_i16.append(('ws_double_bump', flip(double_bump))) lookup_tables_i16.append(('ws_double_bump_sentinel', flip(double_bump))) WAVESHAPER_SIZE = 512 x = numpy.arange(0, WAVESHAPER_SIZE + 4) / (WAVESHAPER_SIZE / 2.0) - 1.0 x[-1] = x[-2] sine = numpy.sin(8 * numpy.pi * x) window = numpy.exp(-x * x * 4) ** 2 bipolar_fold = sine * window + numpy.arctan(3 * x) * (1 - window) bipolar_fold /= numpy.abs(bipolar_fold).max() lookup_tables.append(('fold', bipolar_fold)) def deadband(v_in, r_in, r_load, r_fb=150.0e3, v_sat=10.47): v_out = -r_fb / r_in * v_in v_out[v_out >= v_sat] = v_sat v_out[v_out < -v_sat] = -v_sat return (v_in * r_fb * r_load + v_out * r_in * r_load) / (r_fb * r_load + r_in * r_load + r_in * r_fb) def diode(x): return 0.7 * x / (0.3 + numpy.abs(x)) v_in = x * 12.0 stage_1 = deadband(v_in, 10e3, 100e3) stage_2 = deadband(v_in, 49.9e3, 44.2e3) stage_3 = deadband(v_in, 91e3, 18e3) stage_4 = deadband(v_in, 30e3, 71.4e3) stage_5 = deadband(v_in, 68e3, 33.0e3) stage_45 = -33.0 / 71.4 * stage_4 -33.0 / 33.0 * stage_5 - 33.0 / 240.0 * v_in v_out = diode(-150.0 / 100.0 * stage_1 -150.0 / 44.2 * stage_2 - 150.0 / 18.0 * stage_3 - 150.0 / 33.0 * stage_45) lookup_tables.append(('fold_2', v_out / v_out.max())) """---------------------------------------------------------------------------- Stiffness table (partial detuning) for modal synthesis and additive synthesis. ----------------------------------------------------------------------------""" structure = numpy.arange(0, 65) / 64.0 stiffness = structure + 0 for i, g in enumerate(structure): if g < 0.25: g = 0.25 - g stiffness[i] = -g * 0.25 elif g < 0.3: stiffness[i] = 0.0 elif g < 0.9: g -= 0.3 g /= 0.6 stiffness[i] = 0.01 * 10 ** (g * 2.005) - 0.01 else: g -= 0.9 g /= 0.1 g *= g stiffness[i] = 1.5 - numpy.cos(g * numpy.pi) / 2.0 stiffness[-1] = 2.0 stiffness[-2] = 2.0 lookup_tables += [('stiffness', stiffness)] """---------------------------------------------------------------------------- Delay compensation factor for SVF ----------------------------------------------------------------------------""" ratio = 2.0 ** (numpy.arange(0, 257) / 12.0) svf_shift = 1.0 - 2.0 * numpy.arctan(1.0 / ratio) / (2.0 * numpy.pi) lookup_tables += [('svf_shift', svf_shift)] """---------------------------------------------------------------------------- Excitation signal for LPC speech synthesis. 32x interpolated (band-limited interpolation), phase adjusted for maximum compacity in the time-domain ----------------------------------------------------------------------------""" excitation_pulse = numpy.array([ 42, -44, 50, -78, 18, 37, 20, 2, -31, -59, 2, 95, 90, 5, 15, 38, -4, -91, -91, -42, -35, -36, -4, 37, 43, 34, 33, 15, -1, -8, -18, -19, -17, -9, -10, -6, 0, 3, 2, 1]) def minimum_phase_reconstruction(signal): fft_size = len(signal) Xf = numpy.fft.fft(signal, fft_size) real_cepstrum = numpy.fft.ifft(numpy.log(1e-50 + numpy.abs(Xf))).real real_cepstrum[1:fft_size / 2] *= 2 real_cepstrum[fft_size / 2 + 1:] = 0 min_phi = numpy.fft.ifft(numpy.exp(numpy.fft.fft(real_cepstrum))).real return min_phi n = len(excitation_pulse) target_length = 20 ratio = 32 pulse_upsampled = numpy.fft.irfft(numpy.fft.rfft(excitation_pulse), ratio * n) pulse_upsampled = minimum_phase_reconstruction( pulse_upsampled * numpy.kaiser(n * ratio, 1))[:ratio * target_length] pulse_upsampled -= pulse_upsampled[0] pulse_upsampled[-ratio * 4:] *= numpy.linspace(1, 0, ratio * 4) pulse_upsampled /= pulse_upsampled.max() lookup_tables_i8 += [('lpc_excitation_pulse', numpy.round(pulse_upsampled * 127))]
Report a bug