Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesmarblesresources
..
__init__.py
lookup_tables.py
resources.py
lookup_tables.py
#!/usr/bin/python2.5 # # Copyright 2015 Olivier Gillet. # # Author: Olivier Gillet (ol.gillet@gmail.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Lookup table definitions. import numpy import scipy.stats lookup_tables = [] distributions = [] """---------------------------------------------------------------------------- Raised cosine ----------------------------------------------------------------------------""" x = numpy.arange(0, 257) / 256.0 c = 1.0 - (0.5 * numpy.cos(x * numpy.pi) + 0.5) lookup_tables += [('raised_cosine', c)] x = numpy.arange(0, 257) / 256.0 c = numpy.sin(x * numpy.pi * 2) lookup_tables += [('sine', c)] """---------------------------------------------------------------------------- Logit table ----------------------------------------------------------------------------""" x = numpy.arange(0, 257) / 256.0 log_odds = x * 20.0 - 10.0 odds = 2 ** log_odds p = odds / (1 + odds) lookup_tables += [('logit', p)] """---------------------------------------------------------------------------- Inverse CDF of Beta distribution for various combinations of alpha/beta. Used as a LUT for inverse transform sampling. ----------------------------------------------------------------------------""" N_nu = 9 N_mu = 5 def squash(x): return x / (1 + x ** 2) ** 0.5 nu_values = 2 ** numpy.array([9, 5, 3, 2.5, 2, 1.5, 1, 0.5, -1]) mu_values = numpy.linspace(0, 0.5, N_mu) mu_values[0] = 0.05 plot = False if plot: import pylab VOLTAGE_RANGE = 8 for i, mu in enumerate(mu_values): row = [] for j, nu in enumerate(nu_values): error = numpy.exp(-(numpy.log2(nu) - 1) ** 2 / 20.0) corrected_mu = 0.5 * (2 * mu) ** (1 / (1 + 3.0 * error)) alpha, beta = corrected_mu * nu, (1 - corrected_mu) * nu if plot: x = numpy.arange(-VOLTAGE_RANGE, VOLTAGE_RANGE, 0.1) p = scipy.stats.beta.pdf(0.5 * (x / VOLTAGE_RANGE + 1.0), alpha, beta) pylab.subplot(N_mu, N_nu, i * N_nu + j + 1) pylab.plot(x, p) body = numpy.arange(0, 129) / 128.0 head = body / 20.0 tail = body / 20.0 + 0.95 values = numpy.hstack((body, head, tail)) ppf = scipy.stats.beta.ppf(values, alpha, beta) row += [('icdf_%d_%d' % (i, j), ppf)] if j == N_nu - 1: row += [('icdf_%d_%d_guard' % (i, j), ppf)] distributions += row if i == N_mu - 1: distributions += [(name + '_guard', values) for (name, values) in row] if plot: pylab.show()
Report a bug