Files

copied
Last update 6 years 1 month by Olivier Gillet
Fileselementsdspfx
..
diffuser.h
fx_engine.h
reverb.h
fx_engine.h
// Copyright 2014 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // Base class for building reverb. #ifndef ELEMENTS_DSP_FX_FX_ENGINE_H_ #define ELEMENTS_DSP_FX_FX_ENGINE_H_ #include <algorithm> #include "stmlib/stmlib.h" #include "stmlib/dsp/dsp.h" #include "stmlib/dsp/cosine_oscillator.h" namespace elements { #define TAIL , -1 enum Format { FORMAT_12_BIT, FORMAT_16_BIT, FORMAT_32_BIT }; enum LFOIndex { LFO_1, LFO_2 }; template<Format format> struct DataType { }; template<> struct DataType<FORMAT_12_BIT> { typedef uint16_t T; static inline float Decompress(T value) { return static_cast<float>(static_cast<int16_t>(value)) / 4096.0f; } static inline T Compress(float value) { return static_cast<uint16_t>( stmlib::Clip16(static_cast<int32_t>(value * 4096.0f))); } }; template<> struct DataType<FORMAT_16_BIT> { typedef uint16_t T; static inline float Decompress(T value) { return static_cast<float>(static_cast<int16_t>(value)) / 32768.0f; } static inline T Compress(float value) { return static_cast<uint16_t>( stmlib::Clip16(static_cast<int32_t>(value * 32768.0f))); } }; template<> struct DataType<FORMAT_32_BIT> { typedef float T; static inline float Decompress(T value) { return value;; } static inline T Compress(float value) { return value; } }; template< size_t size, Format format = FORMAT_12_BIT> class FxEngine { public: typedef typename DataType<format>::T T; FxEngine() { } ~FxEngine() { } void Init(T* buffer) { buffer_ = buffer; std::fill(&buffer_[0], &buffer_[size], 0); write_ptr_ = 0; } struct Empty { }; template<int32_t l, typename T = Empty> struct Reserve { typedef T Tail; enum { length = l }; }; template<typename Memory, int32_t index> struct DelayLine { enum { length = DelayLine<typename Memory::Tail, index - 1>::length, base = DelayLine<Memory, index - 1>::base + DelayLine<Memory, index - 1>::length + 1 }; }; template<typename Memory> struct DelayLine<Memory, 0> { enum { length = Memory::length, base = 0 }; }; class Context { friend class FxEngine; public: Context() { } ~Context() { } inline void Load(float value) { accumulator_ = value; } inline void Read(float value, float scale) { accumulator_ += value * scale; } inline void Read(float value) { accumulator_ += value; } inline void Write(float& value) { value = accumulator_; } inline void Write(float& value, float scale) { value = accumulator_; accumulator_ *= scale; } template<typename D> inline void Write(D& d, int32_t offset, float scale) { STATIC_ASSERT(D::base + D::length <= size, delay_memory_full); T w = DataType<format>::Compress(accumulator_); if (offset == -1) { buffer_[(write_ptr_ + D::base + D::length - 1) & MASK] = w; } else { buffer_[(write_ptr_ + D::base + offset) & MASK] = w; } accumulator_ *= scale; } template<typename D> inline void Write(D& d, float scale) { Write(d, 0, scale); } template<typename D> inline void WriteAllPass(D& d, int32_t offset, float scale) { Write(d, offset, scale); accumulator_ += previous_read_; } template<typename D> inline void WriteAllPass(D& d, float scale) { WriteAllPass(d, 0, scale); } template<typename D> inline void Read(D& d, int32_t offset, float scale) { STATIC_ASSERT(D::base + D::length <= size, delay_memory_full); T r; if (offset == -1) { r = buffer_[(write_ptr_ + D::base + D::length - 1) & MASK]; } else { r = buffer_[(write_ptr_ + D::base + offset) & MASK]; } float r_f = DataType<format>::Decompress(r); previous_read_ = r_f; accumulator_ += r_f * scale; } template<typename D> inline void Read(D& d, float scale) { Read(d, 0, scale); } inline void Lp(float& state, float coefficient) { state += coefficient * (accumulator_ - state); accumulator_ = state; } inline void Hp(float& state, float coefficient) { state += coefficient * (accumulator_ - state); accumulator_ -= state; } template<typename D> inline void Interpolate(D& d, float offset, float scale) { STATIC_ASSERT(D::base + D::length <= size, delay_memory_full); MAKE_INTEGRAL_FRACTIONAL(offset); float a = DataType<format>::Decompress( buffer_[(write_ptr_ + offset_integral + D::base) & MASK]); float b = DataType<format>::Decompress( buffer_[(write_ptr_ + offset_integral + D::base + 1) & MASK]); float x = a + (b - a) * offset_fractional; previous_read_ = x; accumulator_ += x * scale; } template<typename D> inline void Interpolate( D& d, float offset, LFOIndex index, float amplitude, float scale) { STATIC_ASSERT(D::base + D::length <= size, delay_memory_full); offset += amplitude * lfo_value_[index]; MAKE_INTEGRAL_FRACTIONAL(offset); float a = DataType<format>::Decompress( buffer_[(write_ptr_ + offset_integral + D::base) & MASK]); float b = DataType<format>::Decompress( buffer_[(write_ptr_ + offset_integral + D::base + 1) & MASK]); float x = a + (b - a) * offset_fractional; previous_read_ = x; accumulator_ += x * scale; } private: float accumulator_; float previous_read_; float lfo_value_[2]; T* buffer_; int32_t write_ptr_; DISALLOW_COPY_AND_ASSIGN(Context); }; inline void SetLFOFrequency(LFOIndex index, float frequency) { lfo_[index].template Init<stmlib::COSINE_OSCILLATOR_APPROXIMATE>(frequency * 32.0f); } inline void Start(Context* c) { --write_ptr_; if (write_ptr_ < 0) { write_ptr_ += size; } c->accumulator_ = 0.0f; c->previous_read_ = 0.0f; c->buffer_ = buffer_; c->write_ptr_ = write_ptr_; if ((write_ptr_ & 31) == 0) { c->lfo_value_[0] = lfo_[0].Next(); c->lfo_value_[1] = lfo_[1].Next(); } else { c->lfo_value_[0] = lfo_[0].value(); c->lfo_value_[1] = lfo_[1].value(); } } private: enum { MASK = size - 1 }; int32_t write_ptr_; T* buffer_; stmlib::CosineOscillator lfo_[2]; DISALLOW_COPY_AND_ASSIGN(FxEngine); }; } // namespace elements #endif // ELEMENTS_DSP_FX_FX_ENGINE_H_
Report a bug