Files

stm8s_uart2.c
/** ******************************************************************************** * @file stm8s_uart2.c * @author MCD Application Team * @version V2.2.0 * @date 30-September-2014 * @brief This file contains all the functions for the UART2 peripheral. ****************************************************************************** * @attention * * <h2><center>&copy; COPYRIGHT 2014 STMicroelectronics</center></h2> * * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm8s_uart2.h" /** @addtogroup STM8S_StdPeriph_Driver * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /* Public functions ----------------------------------------------------------*/ /** @} * @addtogroup UART2_Public_Functions * @{ */ /** * @brief Deinitializes the UART peripheral. * @param None * @retval None */ void UART2_DeInit(void) { /* Clear the Idle Line Detected bit in the status register by a read to the UART2_SR register followed by a Read to the UART2_DR register */ (void) UART2->SR; (void)UART2->DR; UART2->BRR2 = UART2_BRR2_RESET_VALUE; /* Set UART2_BRR2 to reset value 0x00 */ UART2->BRR1 = UART2_BRR1_RESET_VALUE; /* Set UART2_BRR1 to reset value 0x00 */ UART2->CR1 = UART2_CR1_RESET_VALUE; /* Set UART2_CR1 to reset value 0x00 */ UART2->CR2 = UART2_CR2_RESET_VALUE; /* Set UART2_CR2 to reset value 0x00 */ UART2->CR3 = UART2_CR3_RESET_VALUE; /* Set UART2_CR3 to reset value 0x00 */ UART2->CR4 = UART2_CR4_RESET_VALUE; /* Set UART2_CR4 to reset value 0x00 */ UART2->CR5 = UART2_CR5_RESET_VALUE; /* Set UART2_CR5 to reset value 0x00 */ UART2->CR6 = UART2_CR6_RESET_VALUE; /* Set UART2_CR6 to reset value 0x00 */ } /** * @brief Initializes the UART2 according to the specified parameters. * @param BaudRate: The baudrate. * @param WordLength : This parameter can be any of the * @ref UART2_WordLength_TypeDef enumeration. * @param StopBits: This parameter can be any of the * @ref UART2_StopBits_TypeDef enumeration. * @param Parity: This parameter can be any of the * @ref UART2_Parity_TypeDef enumeration. * @param SyncMode: This parameter can be any of the * @ref UART2_SyncMode_TypeDef values. * @param Mode: This parameter can be any of the @ref UART2_Mode_TypeDef values * @retval None */ void UART2_Init(uint32_t BaudRate, UART2_WordLength_TypeDef WordLength, UART2_StopBits_TypeDef StopBits, UART2_Parity_TypeDef Parity, UART2_SyncMode_TypeDef SyncMode, UART2_Mode_TypeDef Mode) { uint8_t BRR2_1 = 0, BRR2_2 = 0; uint32_t BaudRate_Mantissa = 0, BaudRate_Mantissa100 = 0; /* Check the parameters */ assert_param(IS_UART2_BAUDRATE_OK(BaudRate)); assert_param(IS_UART2_WORDLENGTH_OK(WordLength)); assert_param(IS_UART2_STOPBITS_OK(StopBits)); assert_param(IS_UART2_PARITY_OK(Parity)); assert_param(IS_UART2_MODE_OK((uint8_t)Mode)); assert_param(IS_UART2_SYNCMODE_OK((uint8_t)SyncMode)); /* Clear the word length bit */ UART2->CR1 &= (uint8_t)(~UART2_CR1_M); /* Set the word length bit according to UART2_WordLength value */ UART2->CR1 |= (uint8_t)WordLength; /* Clear the STOP bits */ UART2->CR3 &= (uint8_t)(~UART2_CR3_STOP); /* Set the STOP bits number according to UART2_StopBits value */ UART2->CR3 |= (uint8_t)StopBits; /* Clear the Parity Control bit */ UART2->CR1 &= (uint8_t)(~(UART2_CR1_PCEN | UART2_CR1_PS )); /* Set the Parity Control bit to UART2_Parity value */ UART2->CR1 |= (uint8_t)Parity; /* Clear the LSB mantissa of UART2DIV */ UART2->BRR1 &= (uint8_t)(~UART2_BRR1_DIVM); /* Clear the MSB mantissa of UART2DIV */ UART2->BRR2 &= (uint8_t)(~UART2_BRR2_DIVM); /* Clear the Fraction bits of UART2DIV */ UART2->BRR2 &= (uint8_t)(~UART2_BRR2_DIVF); /* Set the UART2 BaudRates in BRR1 and BRR2 registers according to UART2_BaudRate value */ BaudRate_Mantissa = ((uint32_t)CLK_GetClockFreq() / (BaudRate << 4)); BaudRate_Mantissa100 = (((uint32_t)CLK_GetClockFreq() * 100) / (BaudRate << 4)); /* The fraction and MSB mantissa should be loaded in one step in the BRR2 register*/ /* Set the fraction of UARTDIV */ BRR2_1 = (uint8_t)((uint8_t)(((BaudRate_Mantissa100 - (BaudRate_Mantissa * 100)) << 4) / 100) & (uint8_t)0x0F); BRR2_2 = (uint8_t)((BaudRate_Mantissa >> 4) & (uint8_t)0xF0); UART2->BRR2 = (uint8_t)(BRR2_1 | BRR2_2); /* Set the LSB mantissa of UARTDIV */ UART2->BRR1 = (uint8_t)BaudRate_Mantissa; /* Disable the Transmitter and Receiver before setting the LBCL, CPOL and CPHA bits */ UART2->CR2 &= (uint8_t)~(UART2_CR2_TEN | UART2_CR2_REN); /* Clear the Clock Polarity, lock Phase, Last Bit Clock pulse */ UART2->CR3 &= (uint8_t)~(UART2_CR3_CPOL | UART2_CR3_CPHA | UART2_CR3_LBCL); /* Set the Clock Polarity, lock Phase, Last Bit Clock pulse */ UART2->CR3 |= (uint8_t)((uint8_t)SyncMode & (uint8_t)(UART2_CR3_CPOL | \ UART2_CR3_CPHA | UART2_CR3_LBCL)); if ((uint8_t)(Mode & UART2_MODE_TX_ENABLE)) { /* Set the Transmitter Enable bit */ UART2->CR2 |= (uint8_t)UART2_CR2_TEN; } else { /* Clear the Transmitter Disable bit */ UART2->CR2 &= (uint8_t)(~UART2_CR2_TEN); } if ((uint8_t)(Mode & UART2_MODE_RX_ENABLE)) { /* Set the Receiver Enable bit */ UART2->CR2 |= (uint8_t)UART2_CR2_REN; } else { /* Clear the Receiver Disable bit */ UART2->CR2 &= (uint8_t)(~UART2_CR2_REN); } /* Set the Clock Enable bit, lock Polarity, lock Phase and Last Bit Clock pulse bits according to UART2_Mode value */ if ((uint8_t)(SyncMode & UART2_SYNCMODE_CLOCK_DISABLE)) { /* Clear the Clock Enable bit */ UART2->CR3 &= (uint8_t)(~UART2_CR3_CKEN); } else { UART2->CR3 |= (uint8_t)((uint8_t)SyncMode & UART2_CR3_CKEN); } } /** * @brief Enable the UART2 peripheral. * @param NewState : The new state of the UART Communication. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ void UART2_Cmd(FunctionalState NewState) { if (NewState != DISABLE) { /* UART2 Enable */ UART2->CR1 &= (uint8_t)(~UART2_CR1_UARTD); } else { /* UART2 Disable */ UART2->CR1 |= UART2_CR1_UARTD; } } /** * @brief Enables or disables the specified UART2 interrupts. * @param UART2_IT specifies the UART2 interrupt sources to be enabled or disabled. * This parameter can be one of the following values: * - UART2_IT_LBDF: LIN Break detection interrupt * - UART2_IT_LHDF: LIN Break detection interrupt * - UART2_IT_TXE: Transmit Data Register empty interrupt * - UART2_IT_TC: Transmission complete interrupt * - UART2_IT_RXNE_OR: Receive Data register not empty/Over run error interrupt * - UART2_IT_IDLE: Idle line detection interrupt * - UART2_IT_PE: Parity Error interrupt * @param NewState new state of the specified UART2 interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART2_ITConfig(UART2_IT_TypeDef UART2_IT, FunctionalState NewState) { uint8_t uartreg = 0, itpos = 0x00; /* Check the parameters */ assert_param(IS_UART2_CONFIG_IT_OK(UART2_IT)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); /* Get the UART2 register index */ uartreg = (uint8_t)((uint16_t)UART2_IT >> 0x08); /* Get the UART2 IT index */ itpos = (uint8_t)((uint8_t)1 << (uint8_t)((uint8_t)UART2_IT & (uint8_t)0x0F)); if (NewState != DISABLE) { /* Enable the Interrupt bits according to UART2_IT mask */ if (uartreg == 0x01) { UART2->CR1 |= itpos; } else if (uartreg == 0x02) { UART2->CR2 |= itpos; } else if (uartreg == 0x03) { UART2->CR4 |= itpos; } else { UART2->CR6 |= itpos; } } else { /* Disable the interrupt bits according to UART2_IT mask */ if (uartreg == 0x01) { UART2->CR1 &= (uint8_t)(~itpos); } else if (uartreg == 0x02) { UART2->CR2 &= (uint8_t)(~itpos); } else if (uartreg == 0x03) { UART2->CR4 &= (uint8_t)(~itpos); } else { UART2->CR6 &= (uint8_t)(~itpos); } } } /** * @brief Configures the UART2s IrDA interface. * @param UART2_IrDAMode specifies the IrDA mode. * This parameter can be any of the @ref UART2_IrDAMode_TypeDef values. * @retval None */ void UART2_IrDAConfig(UART2_IrDAMode_TypeDef UART2_IrDAMode) { assert_param(IS_UART2_IRDAMODE_OK(UART2_IrDAMode)); if (UART2_IrDAMode != UART2_IRDAMODE_NORMAL) { UART2->CR5 |= UART2_CR5_IRLP; } else { UART2->CR5 &= ((uint8_t)~UART2_CR5_IRLP); } } /** * @brief Enables or disables the UART2s IrDA interface. * @param NewState new state of the IrDA mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART2_IrDACmd(FunctionalState NewState) { /* Check parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the IrDA mode by setting the IREN bit in the CR3 register */ UART2->CR5 |= UART2_CR5_IREN; } else { /* Disable the IrDA mode by clearing the IREN bit in the CR3 register */ UART2->CR5 &= ((uint8_t)~UART2_CR5_IREN); } } /** * @brief Sets the UART2 LIN Break detection length. * @param UART2_LINBreakDetectionLength specifies the LIN break detection length. * This parameter can be any of the * @ref UART2_LINBreakDetectionLength_TypeDef values. * @retval None */ void UART2_LINBreakDetectionConfig(UART2_LINBreakDetectionLength_TypeDef UART2_LINBreakDetectionLength) { /* Check parameters */ assert_param(IS_UART2_LINBREAKDETECTIONLENGTH_OK(UART2_LINBreakDetectionLength)); if (UART2_LINBreakDetectionLength != UART2_LINBREAKDETECTIONLENGTH_10BITS) { UART2->CR4 |= UART2_CR4_LBDL; } else { UART2->CR4 &= ((uint8_t)~UART2_CR4_LBDL); } } /** * @brief Configure the UART2 peripheral. * @param UART2_Mode specifies the LIN mode. * This parameter can be any of the @ref UART2_LinMode_TypeDef values. * @param UART2_Autosync specifies the LIN automatic resynchronization mode. * This parameter can be any of the @ref UART2_LinAutosync_TypeDef values. * @param UART2_DivUp specifies the LIN divider update method. * This parameter can be any of the @ref UART2_LinDivUp_TypeDef values. * @retval None */ void UART2_LINConfig(UART2_LinMode_TypeDef UART2_Mode, UART2_LinAutosync_TypeDef UART2_Autosync, UART2_LinDivUp_TypeDef UART2_DivUp) { /* Check parameters */ assert_param(IS_UART2_SLAVE_OK(UART2_Mode)); assert_param(IS_UART2_AUTOSYNC_OK(UART2_Autosync)); assert_param(IS_UART2_DIVUP_OK(UART2_DivUp)); if (UART2_Mode != UART2_LIN_MODE_MASTER) { UART2->CR6 |= UART2_CR6_LSLV; } else { UART2->CR6 &= ((uint8_t)~UART2_CR6_LSLV); } if (UART2_Autosync != UART2_LIN_AUTOSYNC_DISABLE) { UART2->CR6 |= UART2_CR6_LASE ; } else { UART2->CR6 &= ((uint8_t)~ UART2_CR6_LASE ); } if (UART2_DivUp != UART2_LIN_DIVUP_LBRR1) { UART2->CR6 |= UART2_CR6_LDUM; } else { UART2->CR6 &= ((uint8_t)~ UART2_CR6_LDUM); } } /** * @brief Enables or disables the UART2 LIN mode. * @param NewState is new state of the UART2 LIN mode. * This parameter can be ENABLE or DISABLE * @retval None */ void UART2_LINCmd(FunctionalState NewState) { assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the LIN mode by setting the LINE bit in the CR2 register */ UART2->CR3 |= UART2_CR3_LINEN; } else { /* Disable the LIN mode by clearing the LINE bit in the CR2 register */ UART2->CR3 &= ((uint8_t)~UART2_CR3_LINEN); } } /** * @brief Enables or disables the UART2 Smart Card mode. * @param NewState: new state of the Smart Card mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART2_SmartCardCmd(FunctionalState NewState) { /* Check parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the SC mode by setting the SCEN bit in the CR5 register */ UART2->CR5 |= UART2_CR5_SCEN; } else { /* Disable the SC mode by clearing the SCEN bit in the CR5 register */ UART2->CR5 &= ((uint8_t)(~UART2_CR5_SCEN)); } } /** * @brief Enables or disables NACK transmission. * @param NewState: new state of the Smart Card mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART2_SmartCardNACKCmd(FunctionalState NewState) { /* Check parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the NACK transmission by setting the NACK bit in the CR5 register */ UART2->CR5 |= UART2_CR5_NACK; } else { /* Disable the NACK transmission by clearing the NACK bit in the CR5 register */ UART2->CR5 &= ((uint8_t)~(UART2_CR5_NACK)); } } /** * @brief Selects the UART2 WakeUp method. * @param UART2_WakeUp: specifies the UART2 wakeup method. * This parameter can be any of the @ref UART2_WakeUp_TypeDef values. * @retval None */ void UART2_WakeUpConfig(UART2_WakeUp_TypeDef UART2_WakeUp) { assert_param(IS_UART2_WAKEUP_OK(UART2_WakeUp)); UART2->CR1 &= ((uint8_t)~UART2_CR1_WAKE); UART2->CR1 |= (uint8_t)UART2_WakeUp; } /** * @brief Determines if the UART2 is in mute mode or not. * @param NewState: new state of the UART2 mode. * This parameter can be ENABLE or DISABLE * @retval None */ void UART2_ReceiverWakeUpCmd(FunctionalState NewState) { assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { /* Enable the mute mode UART2 by setting the RWU bit in the CR2 register */ UART2->CR2 |= UART2_CR2_RWU; } else { /* Disable the mute mode UART2 by clearing the RWU bit in the CR1 register */ UART2->CR2 &= ((uint8_t)~UART2_CR2_RWU); } } /** * @brief Returns the most recent received data by the UART2 peripheral. * @param None * @retval Received Data */ uint8_t UART2_ReceiveData8(void) { return ((uint8_t)UART2->DR); } /** * @brief Returns the most recent received data by the UART2 peripheral. * @param None * @retval Received Data */ uint16_t UART2_ReceiveData9(void) { uint16_t temp = 0; temp = ((uint16_t)(((uint16_t)((uint16_t)UART2->CR1 & (uint16_t)UART2_CR1_R8)) << 1)); return (uint16_t)((((uint16_t)UART2->DR) | temp) & ((uint16_t)0x01FF)); } /** * @brief Transmits 8 bit data through the UART2 peripheral. * @param Data: the data to transmit. * @retval None */ void UART2_SendData8(uint8_t Data) { /* Transmit Data */ UART2->DR = Data; } /** * @brief Transmits 9 bit data through the UART2 peripheral. * @param Data: the data to transmit. * @retval None */ void UART2_SendData9(uint16_t Data) { /* Clear the transmit data bit 8 */ UART2->CR1 &= ((uint8_t)~UART2_CR1_T8); /* Write the transmit data bit [8] */ UART2->CR1 |= (uint8_t)(((uint8_t)(Data >> 2)) & UART2_CR1_T8); /* Write the transmit data bit [0:7] */ UART2->DR = (uint8_t)(Data); } /** * @brief Transmits break characters. * @param None * @retval None */ void UART2_SendBreak(void) { UART2->CR2 |= UART2_CR2_SBK; } /** * @brief Sets the address of the UART2 node. * @param UART2_Address: Indicates the address of the UART2 node. * @retval None */ void UART2_SetAddress(uint8_t UART2_Address) { /*assert_param for x UART2_Address*/ assert_param(IS_UART2_ADDRESS_OK(UART2_Address)); /* Clear the UART2 address */ UART2->CR4 &= ((uint8_t)~UART2_CR4_ADD); /* Set the UART2 address node */ UART2->CR4 |= UART2_Address; } /** * @brief Sets the specified UART2 guard time. * @note SmartCard Mode should be Enabled * @param UART2_GuardTime: specifies the guard time. * @retval None */ void UART2_SetGuardTime(uint8_t UART2_GuardTime) { /* Set the UART2 guard time */ UART2->GTR = UART2_GuardTime; } /** * @brief Sets the system clock prescaler. * @note IrDA Low Power mode or smartcard mode should be enabled * @note This function is related to SmartCard and IrDa mode. * @param UART2_Prescaler: specifies the prescaler clock. * This parameter can be one of the following values: * @par IrDA Low Power Mode * The clock source is divided by the value given in the register (8 bits) * - 0000 0000 Reserved * - 0000 0001 divides the clock source by 1 * - 0000 0010 divides the clock source by 2 * - ... * @par Smart Card Mode * The clock source is divided by the value given in the register * (5 significant bits) multiped by 2 * - 0 0000 Reserved * - 0 0001 divides the clock source by 2 * - 0 0010 divides the clock source by 4 * - 0 0011 divides the clock source by 6 * - ... * @retval None */ void UART2_SetPrescaler(uint8_t UART2_Prescaler) { /* Load the UART2 prescaler value*/ UART2->PSCR = UART2_Prescaler; } /** * @brief Checks whether the specified UART2 flag is set or not. * @param UART2_FLAG specifies the flag to check. * This parameter can be any of the @ref UART2_Flag_TypeDef enumeration. * @retval FlagStatus (SET or RESET) */ FlagStatus UART2_GetFlagStatus(UART2_Flag_TypeDef UART2_FLAG) { FlagStatus status = RESET; /* Check parameters */ assert_param(IS_UART2_FLAG_OK(UART2_FLAG)); /* Check the status of the specified UART2 flag*/ if (UART2_FLAG == UART2_FLAG_LBDF) { if ((UART2->CR4 & (uint8_t)UART2_FLAG) != (uint8_t)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } else if (UART2_FLAG == UART2_FLAG_SBK) { if ((UART2->CR2 & (uint8_t)UART2_FLAG) != (uint8_t)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } else if ((UART2_FLAG == UART2_FLAG_LHDF) || (UART2_FLAG == UART2_FLAG_LSF)) { if ((UART2->CR6 & (uint8_t)UART2_FLAG) != (uint8_t)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } else { if ((UART2->SR & (uint8_t)UART2_FLAG) != (uint8_t)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } /* Return the UART2_FLAG status*/ return status; } /** * @brief Clears the UART2 flags. * @param UART2_FLAG specifies the flag to clear * This parameter can be any combination of the following values: * - UART2_FLAG_LBDF: LIN Break detection flag. * - UART2_FLAG_LHDF: LIN Header detection flag. * - UART2_FLAG_LSF: LIN synchrone field flag. * - UART2_FLAG_RXNE: Receive data register not empty flag. * @note: * - PE (Parity error), FE (Framing error), NE (Noise error), * OR (OverRun error) and IDLE (Idle line detected) flags are cleared * by software sequence: a read operation to UART2_SR register * (UART2_GetFlagStatus())followed by a read operation to UART2_DR * register(UART2_ReceiveData8() or UART2_ReceiveData9()). * * - RXNE flag can be also cleared by a read to the UART2_DR register * (UART2_ReceiveData8()or UART2_ReceiveData9()). * * - TC flag can be also cleared by software sequence: a read operation * to UART2_SR register (UART2_GetFlagStatus()) followed by a write * operation to UART2_DR register (UART2_SendData8() or UART2_SendData9()). * * - TXE flag is cleared only by a write to the UART2_DR register * (UART2_SendData8() or UART2_SendData9()). * * - SBK flag is cleared during the stop bit of break. * @retval None */ void UART2_ClearFlag(UART2_Flag_TypeDef UART2_FLAG) { assert_param(IS_UART2_CLEAR_FLAG_OK(UART2_FLAG)); /* Clear the Receive Register Not Empty flag */ if (UART2_FLAG == UART2_FLAG_RXNE) { UART2->SR = (uint8_t)~(UART2_SR_RXNE); } /* Clear the LIN Break Detection flag */ else if (UART2_FLAG == UART2_FLAG_LBDF) { UART2->CR4 &= (uint8_t)(~UART2_CR4_LBDF); } /* Clear the LIN Header Detection Flag */ else if (UART2_FLAG == UART2_FLAG_LHDF) { UART2->CR6 &= (uint8_t)(~UART2_CR6_LHDF); } /* Clear the LIN Synch Field flag */ else { UART2->CR6 &= (uint8_t)(~UART2_CR6_LSF); } } /** * @brief Checks whether the specified UART2 interrupt has occurred or not. * @param UART2_IT: Specifies the UART2 interrupt pending bit to check. * This parameter can be one of the following values: * - UART2_IT_LBDF: LIN Break detection interrupt * - UART2_IT_TXE: Transmit Data Register empty interrupt * - UART2_IT_TC: Transmission complete interrupt * - UART2_IT_RXNE: Receive Data register not empty interrupt * - UART2_IT_IDLE: Idle line detection interrupt * - UART2_IT_OR: OverRun Error interrupt * - UART2_IT_PE: Parity Error interrupt * @retval The state of UART2_IT (SET or RESET). */ ITStatus UART2_GetITStatus(UART2_IT_TypeDef UART2_IT) { ITStatus pendingbitstatus = RESET; uint8_t itpos = 0; uint8_t itmask1 = 0; uint8_t itmask2 = 0; uint8_t enablestatus = 0; /* Check parameters */ assert_param(IS_UART2_GET_IT_OK(UART2_IT)); /* Get the UART2 IT index*/ itpos = (uint8_t)((uint8_t)1 << (uint8_t)((uint8_t)UART2_IT & (uint8_t)0x0F)); /* Get the UART2 IT index*/ itmask1 = (uint8_t)((uint8_t)UART2_IT >> (uint8_t)4); /* Set the IT mask*/ itmask2 = (uint8_t)((uint8_t)1 << itmask1); /* Check the status of the specified UART2 pending bit*/ if (UART2_IT == UART2_IT_PE) { /* Get the UART2_ITPENDINGBIT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART2->CR1 & itmask2); /* Check the status of the specified UART2 interrupt*/ if (((UART2->SR & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } else if (UART2_IT == UART2_IT_LBDF) { /* Get the UART2_IT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART2->CR4 & itmask2); /* Check the status of the specified UART2 interrupt*/ if (((UART2->CR4 & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } else if (UART2_IT == UART2_IT_LHDF) { /* Get the UART2_IT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART2->CR6 & itmask2); /* Check the status of the specified UART2 interrupt*/ if (((UART2->CR6 & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } else { /* Get the UART2_IT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART2->CR2 & itmask2); /* Check the status of the specified UART2 interrupt*/ if (((UART2->SR & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } /* Return the UART2_IT status*/ return pendingbitstatus; } /** * @brief Clears the UART2 pending flags. * @param UART2_IT specifies the pending bit to clear * This parameter can be one of the following values: * - UART2_IT_LBDF: LIN Break detection interrupt * - UART2_IT_LHDF: LIN Header detection interrupt * - UART2_IT_RXNE: Receive Data register not empty interrupt. * @note * - PE (Parity error), FE (Framing error), NE (Noise error), * OR (OverRun error) and IDLE (Idle line detected) pending bits are * cleared by software sequence: a read operation to UART2_SR register * (UART2_GetITStatus()) followed by a read operation to UART2_DR register * (UART2_ReceiveData8() or UART2_ReceiveData9()). * * - RXNE pending bit can be also cleared by a read to the UART2_DR * register (UART2_ReceiveData8() or UART2_ReceiveData9()). * * - TC (Transmit complete) pending bit can be cleared by software * sequence: a read operation to UART2_SR register * (UART2_GetITStatus()) followed by a write operation to UART2_DR * register (UART2_SendData8()or UART2_SendData9()). * * - TXE pending bit is cleared only by a write to the UART2_DR register * (UART2_SendData8() or UART2_SendData9()). * @retval None */ void UART2_ClearITPendingBit(UART2_IT_TypeDef UART2_IT) { assert_param(IS_UART2_CLEAR_IT_OK(UART2_IT)); /* Clear the Receive Register Not Empty pending bit */ if (UART2_IT == UART2_IT_RXNE) { UART2->SR = (uint8_t)~(UART2_SR_RXNE); } /* Clear the LIN Break Detection pending bit */ else if (UART2_IT == UART2_IT_LBDF) { UART2->CR4 &= (uint8_t)~(UART2_CR4_LBDF); } /* Clear the LIN Header Detection pending bit */ else { UART2->CR6 &= (uint8_t)(~UART2_CR6_LHDF); } } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Report a bug