Files

  • Not Found
  • Invalid object requested. SHA must identify a commit or a tree.

There are no circuits or boards in this repository.

Last update 4 months 1 week by chatelao
Filessoftware
..
include
tools
USB_PD_Adapter.ino
makefile
usb_pd_adapter.hex
USB_PD_Adapter.ino
// =================================================================================== // Project: USB PD Adapter // Version: 1.0 // Year: 2022 // Author: Stefan Wagner // Github: https://github.com/wagiminator // EasyEDA: https://easyeda.com/wagiminator // License: http://creativecommons.org/licenses/by-sa/3.0/ // =================================================================================== // // Description: // ------------ // With the USB PD Adapter you can use almost any USB Type-C PD power supply to power // your projects with different selectable voltages and high currents. Important // values such as voltage, current, power and energy are displayed on the OLED. // The USB PD Adapter is based on the cheap and easy-to-use CH224K multi fast // charging protocol power receiving chip, the INA219 voltage and current sensor IC, // and an ATtiny204, 214, 404, 414, 804, 814, 1604 or 1614 microcontroller. // // Wiring: // ------- // +-\/-+ // Vcc 1|° |14 GND // --- !SS AIN4 PA4 2| |13 PA3 AIN3 SCK ---- // ------- AIN5 PA5 3| |12 PA2 AIN2 MISO --- KEY2 // CH224K PG --- DAC AIN6 PA6 4| |11 PA1 AIN1 MOSI --- KEY1 // CH224K CFG1 ------- AIN7 PA7 5| |10 PA0 AIN0 UPDI --- UPDI // CH224K CFG3 -------- RXD PB3 6| |9 PB0 AIN11 SCL --- INA219/OLED // CH224K CFG2 ---------TXD PB2 7| |8 PB1 AIN10 SDA --- INA219/OLED // +----+ // // Compilation Settings: // --------------------- // Core: megaTinyCore (https://github.com/SpenceKonde/megaTinyCore) // Board: ATtiny1614/1604/814/804/414/404/214/204 // Chip: choose the chip you have installed // Clock: 1 MHz internal // // Leave the rest on default settings. Don't forget to "Burn bootloader"! // Compile and upload the code. // // No Arduino core functions or libraries are used. To compile and upload without // Arduino IDE download AVR 8-bit toolchain at: // https://www.microchip.com/mplab/avr-support/avr-and-arm-toolchains-c-compilers // and extract to tools/avr-gcc. Use the makefile to compile and upload. // // Fuse Settings: 0:0x00 1:0x00 2:0x01 4:0x00 5:0xC5 6:0x04 7:0x00 8:0x00 // // Operating Instructions: // ----------------------- // 1. Connect the USB PD Adapter to a USB Type-C PD power supply using a USB-C cable. // 2. Use the SET button to select the desired output voltage. An hourglass appears // on the display while the device is communicating with the power supply. If // the negotiation was successful, a tick is displayed and the desired voltage // is present at the output. // 3. Connect the device to the power consumer via the output screw terminal. // 4. Use the RESET button to clear the energy counter. // =================================================================================== // Libraries, Definitions and Macros // =================================================================================== // Libraries #include <avr/io.h> // for GPIO #include <avr/interrupt.h> // for interrupts #include <util/delay.h> // for delays // Pin definitions #define PIN_SCL PB0 // I2C SCL, connected to INA219 and OLED #define PIN_SDA PB1 // I2C SDA, connected to INA219 and OLED #define PIN_CFG1 PA7 // CFG1 of CH224K #define PIN_CFG2 PB2 // CFG2 of CH224K #define PIN_CFG3 PB3 // CFG3 of CH224K #define PIN_PG PA6 // Power Good of CH224K #define PIN_KEY1 PA1 // Key 1 #define PIN_KEY2 PA2 // Key 2 // Pin manipulation macros enum {PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PB0, PB1, PB2, PB3}; // enumerate pin designators #define pinInput(x) (&VPORTA.DIR)[((x)&8)>>1] &= ~(1<<((x)&7)) // set pin to INPUT #define pinOutput(x) (&VPORTA.DIR)[((x)&8)>>1] |= (1<<((x)&7)) // set pin to OUTPUT #define pinLow(x) (&VPORTA.OUT)[((x)&8)>>1] &= ~(1<<((x)&7)) // set pin to LOW #define pinHigh(x) (&VPORTA.OUT)[((x)&8)>>1] |= (1<<((x)&7)) // set pin to HIGH #define pinToggle(x) (&VPORTA.IN )[((x)&8)>>1] |= (1<<((x)&7)) // TOGGLE pin #define pinRead(x) ((&VPORTA.IN)[((x)&8)>>1] & (1<<((x)&7))) // READ pin #define pinDisable(x) (&PORTA.PIN0CTRL)[(((x)&8)<<2)+((x)&7)] |= PORT_ISC_INPUT_DISABLE_gc #define pinPullup(x) (&PORTA.PIN0CTRL)[(((x)&8)<<2)+((x)&7)] |= PORT_PULLUPEN_bm // =================================================================================== // I2C Master Implementation (Read/Write, Conservative) // =================================================================================== #define I2C_FREQ 100000 // I2C clock frequency in Hz #define I2C_BAUD ((F_CPU / I2C_FREQ) - 10) / 2; // simplified BAUD calculation // I2C init function void I2C_init(void) { TWI0.MBAUD = I2C_BAUD; // set TWI master BAUD rate TWI0.MCTRLA = TWI_ENABLE_bm; // enable TWI master TWI0.MSTATUS = TWI_BUSSTATE_IDLE_gc; // set bus state to idle } // I2C start transmission void I2C_start(uint8_t addr) { TWI0.MADDR = addr; // start sending address while(!(TWI0.MSTATUS&(TWI_WIF_bm|TWI_RIF_bm))); // wait for transfer to complete } // I2C restart transmission void I2C_restart(uint8_t addr) { I2C_start(addr); // start sending address } // I2C stop transmission void I2C_stop(void) { TWI0.MCTRLB = TWI_MCMD_STOP_gc; // send stop condition } // I2C transmit one data byte to the slave, ignore ACK bit void I2C_write(uint8_t data) { TWI0.MDATA = data; // start sending data byte while(~TWI0.MSTATUS & TWI_WIF_bm); // wait for transfer to complete } // I2C receive one data byte from slave; ack=0: last byte, ack>0: more bytes to follow uint8_t I2C_read(uint8_t ack) { while(~TWI0.MSTATUS & TWI_RIF_bm); // wait for transfer to complete uint8_t data = TWI0.MDATA; // get received data byte if(ack) TWI0.MCTRLB = TWI_MCMD_RECVTRANS_gc; // ACK: read more bytes else TWI0.MCTRLB = TWI_ACKACT_NACK_gc; // NACK: this was the last byte return data; // return received byte } // =================================================================================== // INA219 Implementation // =================================================================================== // INA219 register values #define INA_ADDR 0x80 // I2C write address of INA219 #define INA_CONFIG 0b0010011111111111 // INA config register according to datasheet #define INA_CALIB 4096 // INA calibration register according to R_SHUNT #define INA_REG_CONFIG 0x00 // INA configuration register address #define INA_REG_CALIB 0x05 // INA calibration register address #define INA_REG_SHUNT 0x01 // INA shunt voltage register address #define INA_REG_VOLTAGE 0x02 // INA bus voltage register address #define INA_REG_POWER 0x03 // INA power register address #define INA_REG_CURRENT 0x04 // INA current register address // INA219 write a register value void INA_write(uint8_t reg, uint16_t value) { I2C_start(INA_ADDR); // start transmission to INA219 I2C_write(reg); // write register address I2C_write(value >> 8); // write register content high byte I2C_write(value); // write register content low byte I2C_stop(); // stop transmission } // INA219 read a register uint16_t INA_read(uint8_t reg) { uint16_t result; // result variable I2C_start(INA_ADDR); // start transmission to INA219 I2C_write(reg); // write register address I2C_restart(INA_ADDR | 0x01); // restart for reading result = (uint16_t)(I2C_read(1) << 8) | I2C_read(0); // read register content I2C_stop(); // stop transmission return result; // return result } // INA219 write inital configuration and calibration values void INA_init(void) { INA_write(INA_REG_CONFIG, INA_CONFIG); // write INA219 configuration INA_write(INA_REG_CALIB, INA_CALIB); // write INA219 calibration } // INA219 read voltage uint16_t INA_readVoltage(void) { return((INA_read(INA_REG_VOLTAGE) >> 1) & 0xFFFC); } // INA219 read sensor values uint16_t INA_readCurrent(void) { uint16_t result = INA_read(INA_REG_CURRENT); // read current from INA if(result > 32767) result = 0; // ignore nagtive currents return result; // return result } // =================================================================================== // OLED Implementation // =================================================================================== // OLED definitions #define OLED_ADDR 0x78 // OLED write address #define OLED_CMD_MODE 0x00 // set command mode #define OLED_DAT_MODE 0x40 // set data mode // OLED init settings const uint8_t OLED_INIT_CMD[] = { 0xA8, 0x1F, // set multiplex for 128x32 0x20, 0x01, // set vertical memory addressing mode 0xDA, 0x02, // set COM pins hardware configuration to sequential 0x8D, 0x14, // enable charge pump 0xAF // switch on OLED }; // OLED 5x16 font const uint8_t OLED_FONT[] = { 0x7C, 0x1F, 0x02, 0x20, 0x02, 0x20, 0x02, 0x20, 0x7C, 0x1F, // 0 0 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x1F, // 1 1 0x00, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x00, // 2 2 0x00, 0x00, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x1F, // 3 3 0x7C, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x7C, 0x1F, // 4 4 0x7C, 0x00, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x00, 0x1F, // 5 5 0x7C, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x00, 0x1F, // 6 6 0x7C, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x7C, 0x1F, // 7 7 0x7C, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x1F, // 8 8 0x7C, 0x00, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x1F, // 9 9 0x7C, 0x3F, 0x82, 0x00, 0x82, 0x00, 0x82, 0x00, 0x7C, 0x3F, // A 10 0x7C, 0x03, 0x00, 0x0C, 0x00, 0x30, 0x00, 0x0C, 0x7C, 0x03, // V 11 0x7C, 0x1F, 0x00, 0x20, 0x00, 0x3F, 0x00, 0x20, 0x7C, 0x1F, // W 12 0x7C, 0x3F, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x00, 0x3F, // h 13 0x00, 0x3F, 0x80, 0x00, 0x80, 0x3F, 0x80, 0x00, 0x00, 0x3F, // m 14 0x7C, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x00, 0x00, // E 15 0x02, 0x00, 0x02, 0x00, 0x7E, 0x3F, 0x02, 0x00, 0x02, 0x00, // T 16 0x00, 0x00, 0x30, 0x06, 0x30, 0x06, 0x00, 0x00, 0x00, 0x00, // : 17 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 18 SPACE 0x3E, 0x3E, 0x72, 0x39, 0xE2, 0x3C, 0x72, 0x39, 0x3E, 0x3E, // 19 hourglass 0x60, 0x00, 0x80, 0x01, 0x00, 0x06, 0x80, 0x01, 0x60, 0x00 // 20 checkmark }; // Character definitions #define COLON 17 #define SPACE 18 #define GLASS 19 #define CHECK 20 // BCD conversion array const uint16_t DIVIDER[] = {1, 10, 100, 1000, 10000}; // OLED init function void OLED_init(void) { I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_CMD_MODE); // set command mode for (uint8_t i = 0; i < sizeof(OLED_INIT_CMD); i++) I2C_write(OLED_INIT_CMD[i]); // send the command bytes I2C_stop(); // stop transmission } // OLED set the cursor void OLED_setCursor(uint8_t xpos, uint8_t ypos) { I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_CMD_MODE); // set command mode I2C_write(0x22); // command for min/max page I2C_write(ypos); I2C_write(ypos+1); // min: ypos; max: ypos+1 I2C_write(xpos & 0x0F); // set low nibble of start column I2C_write(0x10 | (xpos >> 4)); // set high nibble of start column I2C_write(0xB0 | (ypos)); // set start page I2C_stop(); // stop transmission } // OLED clear a line void OLED_clearLine(uint8_t ypos) { OLED_setCursor(0, ypos); // set cursor at line start I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_DAT_MODE); // set data mode uint8_t i = 0; // count variable do {I2C_write(0x00);} while(--i); // clear upper half I2C_stop(); // stop transmission } // OLED clear screen void OLED_clearScreen(void) { OLED_clearLine(0); OLED_clearLine(2); // clear both lines } // OLED plot a single character void OLED_plotChar(uint8_t ch) { ch = (ch << 1) + (ch << 3); // calculate position of character in font array I2C_write(0x00); I2C_write(0x00); // print spacing between characters I2C_write(0x00); I2C_write(0x00); for(uint8_t i=10; i; i--) I2C_write(OLED_FONT[ch++]); // print character } // OLED print a character void OLED_printChar(uint8_t ch) { I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_DAT_MODE); // set data mode OLED_plotChar(ch); // plot the character I2C_stop(); // stop transmission } // OLED print a "string"; terminator: 255 void OLED_printStr(const uint8_t* p) { I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_DAT_MODE); // set data mode while(*p < 255) OLED_plotChar(*p++); // plot each character of the string I2C_stop(); // stop transmission } // OLED print value (BCD conversion by substraction method) void OLED_printVal(uint16_t value) { uint8_t digits = 5; // print 5 digits uint8_t leadflag = 0; // flag for leading spaces I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_DAT_MODE); // set data mode while(digits--) { // for all digits digits uint8_t digitval = 0; // start with digit value 0 uint16_t divider = DIVIDER[digits]; // read current divider while(value >= divider) { // if current divider fits into the value leadflag = 1; // end of leading spaces digitval++; // increase digit value value -= divider; // decrease value by divider } if(!digits) leadflag++; // least digit has to be printed if(leadflag) OLED_plotChar(digitval); // print the digit else OLED_plotChar(SPACE); // or print leading space } I2C_stop(); // stop transmission } // OLED print 8-bit value as 2-digit decimal (BCD conversion by substraction method) void OLED_printDec(uint8_t value, uint8_t lead) { I2C_start(OLED_ADDR); // start transmission to OLED I2C_write(OLED_DAT_MODE); // set data mode uint8_t digitval = 0; // start with digit value 0 while(value >= 10) { // if current divider fits into the value digitval++; // increase digit value value -= 10; // decrease value by divider } if(digitval) OLED_plotChar(digitval); // print first digit else OLED_plotChar(lead); OLED_plotChar(value); // print second digit I2C_stop(); // stop transmission } // =================================================================================== // Millis Counter Implementation for TCB0 // =================================================================================== volatile uint32_t MIL_counter = 0; // millis counter variable // Init millis counter void MIL_init(void) { TCB0.CCMP = (F_CPU / 1000) - 1; // set TOP value (period) TCB0.CTRLA = TCB_ENABLE_bm; // enable timer/counter TCB0.INTCTRL = TCB_CAPT_bm; // enable periodic interrupt } // Read millis counter uint32_t MIL_read(void) { cli(); // disable interrupt for atomic read uint32_t result = MIL_counter; // read millis counter sei(); // enable interrupt again return result; // return millis counter value } // TCB0 interrupt service routine (every millisecond) ISR(TCB0_INT_vect) { TCB0.INTFLAGS = TCB_CAPT_bm; // clear interrupt flag MIL_counter++; // increase millis counter } // =================================================================================== // CH224K Implementation // =================================================================================== // Some variables enum {SET_5V, SET_9V, SET_12V, SET_15V, SET_20V}; const uint8_t VOLTAGES[] = {5, 9, 12, 15, 20}; uint8_t CH224K_volt = 0; // current voltage pointer // Some macros #define CH224K_getVolt() (VOLTAGES[CH224K_volt]) // get voltage #define CH224K_isGood() (!pinRead(PIN_PG)) // power good? // CH224K init void CH224K_init(void) { pinHigh(PIN_CFG1); // start with 5V pinOutput(PIN_CFG1); // CFG pins as output... pinOutput(PIN_CFG2); pinOutput(PIN_CFG3); pinPullup(PIN_PG); // pullup for Power Good pin } // CH224K set voltage void CH224K_setVolt(uint8_t volt) { CH224K_volt = volt; switch(CH224K_volt) { // set CFG pins according to voltage case SET_5V: pinHigh(PIN_CFG1); break; case SET_9V: pinLow (PIN_CFG1); pinLow (PIN_CFG2); pinLow (PIN_CFG3); break; case SET_12V: pinLow (PIN_CFG1); pinLow (PIN_CFG2); pinHigh(PIN_CFG3); break; case SET_15V: pinLow (PIN_CFG1); pinHigh(PIN_CFG2); pinHigh(PIN_CFG3); break; case SET_20V: pinLow (PIN_CFG1); pinHigh(PIN_CFG2); pinLow (PIN_CFG3); break; default: break; } } // CH224K set next voltage void CH224K_nextVolt(void) { if(++CH224K_volt > SET_20V) CH224K_volt = SET_5V; // next voltage switch(CH224K_volt) { // change pins according to voltage case SET_5V: pinHigh(PIN_CFG1); pinLow(PIN_CFG2); break; case SET_9V: pinLow (PIN_CFG1); break; case SET_12V: pinHigh(PIN_CFG3); break; case SET_15V: pinHigh(PIN_CFG2); break; case SET_20V: pinLow (PIN_CFG3); break; default: break; } } // =================================================================================== // Main Function // =================================================================================== // Some "strings" const uint8_t mA[] = { 14, 10, 255 }; // "mA" const uint8_t mV[] = { 14, 11, 255 }; // "mV" const uint8_t mW[] = { 14, 12, 18, 255 }; // "mW " const uint8_t Ah[] = { 10, 13, 18, 255 }; // "Ah " const uint8_t mAh[] = { 14, 10, 13, 255 }; // "mAh" const uint8_t Wt[] = { 12, 18, 18, 255 }; // "W " const uint8_t Wh[] = { 12, 13, 18, 255 }; // "Wh " const uint8_t mWh[] = { 14, 12, 13, 255 }; // "mWh" const uint8_t SET[] = { 5, 15, 16, 17, 18, 255 }; // "SET: " const uint8_t HGL[] = { 11, SPACE, GLASS, SPACE, 255}; // hourglass const uint8_t CMK[] = { 11, SPACE, CHECK, SPACE, 255}; // checkmark const uint8_t SEP[] = { SPACE, SPACE, SPACE, 255}; // seperator // Main function int main(void) { // Setup _PROTECTED_WRITE(CLKCTRL.MCLKCTRLB, 7); // set clock frequency to 1 MHz CH224K_init(); // init CH224K I2C_init(); // init I2C INA_init(); // init INA219 OLED_init(); // init OLED MIL_init(); // init TCB for millis counter sei(); // enable interrupts pinPullup(PIN_KEY1); pinPullup(PIN_KEY2); // pullup for keys OLED_clearScreen(); // clear OLED // Local variables uint16_t volt, curr; // voltage in mV, current in mA uint32_t power; // power in mW uint32_t energy = 0, charge = 0; // counter for energy and charge uint32_t interval, nowmillis, lastmillis = 0; // for timing calculation in millis uint32_t duration = 0; // total duration in ms uint16_t seconds = 0; // total duration in seconds uint8_t lastkey1 = 0, lastkey2 = 0; // for key pressed dectection // Loop while(1) { // loop until forever // Read sensor values volt = INA_readVoltage(); // read voltage in mV from INA219 curr = INA_readCurrent(); // read current in mA from INA219 // Calculate timings nowmillis = MIL_read(); // read millis counter interval = nowmillis - lastmillis; // calculate recent time interval lastmillis = nowmillis; // reset lastmillis duration += interval; // calculate total duration in millis seconds = duration / 1000; // calculate total duration in seconds // Calculate power, capacity and energy power = (uint32_t)volt * curr / 1000; // calculate power in mW energy += interval * power / 3600; // calculate energy in uWh charge += interval * curr / 3600; // calculate charge in uAh // Check SET button if(pinRead(PIN_KEY1)) lastkey1 = 0; else if(!lastkey1) { CH224K_nextVolt(); lastkey1++; } // Check RESET button if(pinRead(PIN_KEY2)) lastkey2 = 0; else if(!lastkey2) { duration = 0; seconds = 0; energy = 0; charge = 0; lastkey2++; } // Display values on the OLED OLED_setCursor(0,0); OLED_printStr(SET); OLED_printDec(CH224K_getVolt(), SPACE); OLED_printStr(CH224K_isGood() ? CMK : HGL); OLED_printVal(volt); OLED_printStr(mV); OLED_setCursor(0,2); switch(seconds & 0x0C) { case 0x00: if(power > 65535) { OLED_printVal(power / 1000); OLED_printStr(Wt); } else { OLED_printVal(power); OLED_printStr(mW); } break; case 0x04: if(energy > 65535) { OLED_printVal(energy / 1000000); OLED_printStr(Wh); } else { OLED_printVal(energy / 1000); OLED_printStr(mWh); } break; case 0x08: if(charge > 65535) { OLED_printVal(charge / 1000000); OLED_printStr(Ah); } else { OLED_printVal(charge / 1000); OLED_printStr(mAh); } break; case 0x0C: OLED_printDec(seconds / 3600, 0); OLED_printChar(COLON); seconds %= 3600; OLED_printDec(seconds / 60 , 0); OLED_printChar(COLON); OLED_printDec(seconds % 60 , 0); break; default: break; } OLED_printStr(SEP); OLED_printVal(curr); OLED_printStr(mA); _delay_ms(50); } }
Report a bug