Files
-
PCB ESP32 / bak / PCB1.PcbDoc
-
PCB ESP32 / bak / Sheet1.SchDoc
-
PCB ESP32 / bak / Sheet2.SchDoc
-
PCB ESP32 / Control_Board / Conns.SchDoc
-
PCB ESP32 / Control_Board / Control_Board.PcbDoc
-
PCB ESP32 / Control_Board / PCB2.PcbDoc
-
PCB ESP32 / Control_Board / Circuit Maker / Control_Board.PcbDoc
-
PCB ESP32 / Main / PCB2.PcbDoc
-
PCB ESP32 / Main / Sheet1.SchDoc
-
PCB ESP32 / Main / Sheet2.SchDoc
-
PCB ESP32 / Main / Sheet3.SchDoc
-
PCB ESP32 / Main / Sheet4.SchDoc
-
PCB ESP32 / Main / Sheet4_Matrix.SchDoc
-
PCB ESP32 / Matrix / PCB1.PcbDoc
-
PCB ESP32 / Matrix2 / PCB2.PcbDoc
-
PCB ESP32 / Panel / panel.PcbDoc
-
PCB ESP32 / refs / OnOnfre_DevBoard_rev4.sch
-
PCB ESP32 / Resistor Patch / 1 / ResistorPatch1.PcbDoc
-
PCB ESP32 / Resistor Patch / 1 / ResistorPatch1.SchDoc
-
PCB ESP32 / Resistor Patch / 2 / ResistorPatch2.PcbDoc
-
PCB ESP32 / Resistor Patch / 2 / ResistorPatch2.SchDoc
-
PCB ESP32 / SOT223 Patch / PCB1.PcbDoc
-
PCB ESP32 / SOT223 Patch / Sheet1.SchDoc
Last update 5 years 4 months
by Afonso Muralha
FilesCODEFirmwarelib | |
---|---|
.. | |
AdafruitGFX | |
AsyncWebServer | |
ISSI | |
mDNS | |
AsyncTCP.cpp | |
AsyncTCP.h | |
README |
AsyncTCP.cpp/* Asynchronous TCP library for Espressif MCUs Copyright (c) 2016 Hristo Gochkov. All rights reserved. This file is part of the esp8266 core for Arduino environment. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "Arduino.h" #include "AsyncTCP.h" extern "C"{ #include "lwip/opt.h" #include "lwip/tcp.h" #include "lwip/inet.h" #include "lwip/dns.h" } #if CONFIG_FREERTOS_UNICORE #define ASYNCTCP_RUNNING_CORE 0 #else #define ASYNCTCP_RUNNING_CORE 1 #endif /* * TCP/IP Event Task * */ typedef enum { LWIP_TCP_SENT, LWIP_TCP_RECV, LWIP_TCP_ERROR, LWIP_TCP_POLL, LWIP_TCP_CLEAR } lwip_event_t; typedef struct { lwip_event_t event; void *arg; union { struct { void * pcb; int8_t err; } connected; struct { int8_t err; } error; struct { tcp_pcb * pcb; uint16_t len; } sent; struct { tcp_pcb * pcb; pbuf * pb; int8_t err; } recv; struct { tcp_pcb * pcb; } poll; struct { tcp_pcb * pcb; int8_t err; } accept; struct { const char * name; ip_addr_t addr; } dns; }; } lwip_event_packet_t; static xQueueHandle _async_queue; static TaskHandle_t _async_service_task_handle = NULL; static inline bool _init_async_event_queue(){ if(!_async_queue){ _async_queue = xQueueCreate(32, sizeof(lwip_event_packet_t *)); if(!_async_queue){ return false; } } return true; } static inline bool _send_async_event(lwip_event_packet_t ** e){ return _async_queue && xQueueSend(_async_queue, e, portMAX_DELAY) == pdPASS; } static inline bool _prepend_async_event(lwip_event_packet_t ** e){ return _async_queue && xQueueSendToFront(_async_queue, e, portMAX_DELAY) == pdPASS; } static inline bool _get_async_event(lwip_event_packet_t ** e){ return _async_queue && xQueueReceive(_async_queue, e, portMAX_DELAY) == pdPASS; } static bool _remove_events_with_arg(void * arg){ lwip_event_packet_t * first_packet = NULL; lwip_event_packet_t * packet = NULL; if(!_async_queue){ return false; } //figure out which is the first packet so we can keep the order while(!first_packet){ if(xQueueReceive(_async_queue, &first_packet, 0) != pdPASS){ return false; } //discard packet if matching if((int)first_packet->arg == (int)arg){ //ets_printf("X: 0x%08x\n", (uint32_t)first_packet->arg); free(first_packet); first_packet = NULL; //return first packet to the back of the queue } else if(xQueueSend(_async_queue, &first_packet, portMAX_DELAY) != pdPASS){ return false; } } while(xQueuePeek(_async_queue, &packet, 0) == pdPASS && packet != first_packet){ if(xQueueReceive(_async_queue, &packet, 0) != pdPASS){ return false; } if((int)packet->arg == (int)arg){ //ets_printf("X: 0x%08x\n", (uint32_t)packet->arg); free(packet); packet = NULL; } else if(xQueueSend(_async_queue, &packet, portMAX_DELAY) != pdPASS){ return false; } } return true; } static void _handle_async_event(lwip_event_packet_t * e){ if(e->event == LWIP_TCP_CLEAR){ _remove_events_with_arg(e->arg); } else if(e->event == LWIP_TCP_RECV){ //ets_printf("%c: 0x%08x 0x%08x\n", e->recv.pb?'R':'D', e->arg, e->recv.pcb); AsyncClient::_s_recv(e->arg, e->recv.pcb, e->recv.pb, e->recv.err); } else if(e->event == LWIP_TCP_SENT){ //ets_printf("S: 0x%08x 0x%08x\n", e->arg, e->sent.pcb); AsyncClient::_s_sent(e->arg, e->sent.pcb, e->sent.len); } else if(e->event == LWIP_TCP_POLL){ //ets_printf("P: 0x%08x 0x%08x\n", e->arg, e->poll.pcb); AsyncClient::_s_poll(e->arg, e->poll.pcb); } else if(e->event == LWIP_TCP_ERROR){ AsyncClient::_s_error(e->arg, e->error.err); } free((void*)(e)); } static void _async_service_task(void *pvParameters){ lwip_event_packet_t * packet = NULL; for (;;) { if(_get_async_event(&packet)){ _handle_async_event(packet); } } vTaskDelete(NULL); _async_service_task_handle = NULL; } /* static void _stop_async_task(){ if(_async_service_task_handle){ vTaskDelete(_async_service_task_handle); _async_service_task_handle = NULL; } } */ static bool _start_async_task(){ if(!_init_async_event_queue()){ return false; } if(!_async_service_task_handle){ xTaskCreatePinnedToCore(_async_service_task, "async_tcp", 8192, NULL, 3, &_async_service_task_handle, ASYNCTCP_RUNNING_CORE); if(!_async_service_task_handle){ return false; } } return true; } /* * LwIP Callbacks * */ static int8_t _tcp_clear_events(void * arg) { lwip_event_packet_t * e = (lwip_event_packet_t *)malloc(sizeof(lwip_event_packet_t)); e->event = LWIP_TCP_CLEAR; e->arg = arg; if (!_prepend_async_event(&e)) { free((void*)(e)); } return ERR_OK; } static int8_t _tcp_poll(void * arg, struct tcp_pcb * pcb) { lwip_event_packet_t * e = (lwip_event_packet_t *)malloc(sizeof(lwip_event_packet_t)); e->event = LWIP_TCP_POLL; e->arg = arg; e->poll.pcb = pcb; if (!_send_async_event(&e)) { free((void*)(e)); } return ERR_OK; } static int8_t _tcp_recv(void * arg, struct tcp_pcb * pcb, struct pbuf *pb, int8_t err) { lwip_event_packet_t * e = (lwip_event_packet_t *)malloc(sizeof(lwip_event_packet_t)); e->event = LWIP_TCP_RECV; e->arg = arg; e->recv.pcb = pcb; e->recv.pb = pb; e->recv.err = err; if (!_send_async_event(&e)) { free((void*)(e)); } return ERR_OK; } static int8_t _tcp_sent(void * arg, struct tcp_pcb * pcb, uint16_t len) { lwip_event_packet_t * e = (lwip_event_packet_t *)malloc(sizeof(lwip_event_packet_t)); e->event = LWIP_TCP_SENT; e->arg = arg; e->sent.pcb = pcb; e->sent.len = len; if (!_send_async_event(&e)) { free((void*)(e)); } return ERR_OK; } static void _tcp_error(void * arg, int8_t err) { lwip_event_packet_t * e = (lwip_event_packet_t *)malloc(sizeof(lwip_event_packet_t)); e->event = LWIP_TCP_ERROR; e->arg = arg; e->error.err = err; if (!_send_async_event(&e)) { free((void*)(e)); } } /* * TCP/IP API Calls * */ #include "lwip/priv/tcpip_priv.h" typedef struct { struct tcpip_api_call_data call; tcp_pcb * pcb; int8_t err; union { struct { const char* data; size_t size; uint8_t apiflags; } write; size_t received; struct { ip_addr_t * addr; uint16_t port; tcp_connected_fn cb; } connect; struct { ip_addr_t * addr; uint16_t port; } bind; uint8_t backlog; }; } tcp_api_call_t; static err_t _tcp_output_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; if(msg->pcb){ msg->err = tcp_output(msg->pcb); } else { msg->err = 0; } return msg->err; } static esp_err_t _tcp_output(tcp_pcb * pcb) { tcp_api_call_t msg; msg.pcb = pcb; tcpip_api_call(_tcp_output_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_write_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = tcp_write(msg->pcb, msg->write.data, msg->write.size, msg->write.apiflags); return msg->err; } static esp_err_t _tcp_write(tcp_pcb * pcb, const char* data, size_t size, uint8_t apiflags) { tcp_api_call_t msg; msg.pcb = pcb; msg.write.data = data; msg.write.size = size; msg.write.apiflags = apiflags; tcpip_api_call(_tcp_write_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_recved_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = 0; tcp_recved(msg->pcb, msg->received); return msg->err; } static esp_err_t _tcp_recved(tcp_pcb * pcb, size_t len) { tcp_api_call_t msg; msg.pcb = pcb; msg.received = len; tcpip_api_call(_tcp_recved_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_connect_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = tcp_connect(msg->pcb, msg->connect.addr, msg->connect.port, msg->connect.cb); return msg->err; } static esp_err_t _tcp_connect(tcp_pcb * pcb, ip_addr_t * addr, uint16_t port, tcp_connected_fn cb) { tcp_api_call_t msg; msg.pcb = pcb; msg.connect.addr = addr; msg.connect.port = port; msg.connect.cb = cb; tcpip_api_call(_tcp_connect_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_close_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = tcp_close(msg->pcb); return msg->err; } static esp_err_t _tcp_close(tcp_pcb * pcb) { tcp_api_call_t msg; msg.pcb = pcb; //ets_printf("close 0x%08x\n", (uint32_t)pcb); tcpip_api_call(_tcp_close_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_abort_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = 0; tcp_abort(msg->pcb); return msg->err; } static esp_err_t _tcp_abort(tcp_pcb * pcb) { tcp_api_call_t msg; msg.pcb = pcb; //ets_printf("abort 0x%08x\n", (uint32_t)pcb); tcpip_api_call(_tcp_abort_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_bind_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = tcp_bind(msg->pcb, msg->bind.addr, msg->bind.port); return msg->err; } static esp_err_t _tcp_bind(tcp_pcb * pcb, ip_addr_t * addr, uint16_t port) { tcp_api_call_t msg; msg.pcb = pcb; msg.bind.addr = addr; msg.bind.port = port; tcpip_api_call(_tcp_bind_api, (struct tcpip_api_call_data*)&msg); return msg.err; } static err_t _tcp_listen_api(struct tcpip_api_call_data *api_call_msg){ tcp_api_call_t * msg = (tcp_api_call_t *)api_call_msg; msg->err = 0; msg->pcb = tcp_listen_with_backlog(msg->pcb, msg->backlog); return msg->err; } static tcp_pcb * _tcp_listen_with_backlog(tcp_pcb * pcb, uint8_t backlog) { tcp_api_call_t msg; msg.pcb = pcb; msg.backlog = backlog?backlog:0xFF; tcpip_api_call(_tcp_listen_api, (struct tcpip_api_call_data*)&msg); return msg.pcb; } #define _tcp_listen(p) _tcp_listen_with_backlog(p, 0xFF); /* Async TCP Client */ AsyncClient::AsyncClient(tcp_pcb* pcb) : _connect_cb(0) , _connect_cb_arg(0) , _discard_cb(0) , _discard_cb_arg(0) , _sent_cb(0) , _sent_cb_arg(0) , _error_cb(0) , _error_cb_arg(0) , _recv_cb(0) , _recv_cb_arg(0) , _pb_cb(0) , _pb_cb_arg(0) , _timeout_cb(0) , _timeout_cb_arg(0) , _pcb_busy(false) , _pcb_sent_at(0) , _close_pcb(false) , _ack_pcb(true) , _rx_last_packet(0) , _rx_since_timeout(0) , _ack_timeout(ASYNC_MAX_ACK_TIME) , _connect_port(0) , prev(NULL) , next(NULL) , _in_lwip_thread(false) { //ets_printf("+: 0x%08x\n", (uint32_t)this); _pcb = pcb; if(_pcb){ _rx_last_packet = millis(); tcp_arg(_pcb, this); tcp_recv(_pcb, &_tcp_recv); tcp_sent(_pcb, &_tcp_sent); tcp_err(_pcb, &_tcp_error); tcp_poll(_pcb, &_tcp_poll, 1); //ets_printf("accept 0x%08x\n", (uint32_t)_pcb); } } AsyncClient::~AsyncClient(){ if(_pcb) _close(); //ets_printf("-: 0x%08x\n", (uint32_t)this); } bool AsyncClient::connect(IPAddress ip, uint16_t port){ if (_pcb){ log_w("already connected, state %d", _pcb->state); return false; } if(!_start_async_task()){ log_e("failed to start task"); return false; } ip_addr_t addr; addr.type = IPADDR_TYPE_V4; addr.u_addr.ip4.addr = ip; tcp_pcb* pcb = tcp_new_ip_type(IPADDR_TYPE_V4); if (!pcb){ log_e("pcb == NULL"); return false; } tcp_arg(pcb, this); tcp_err(pcb, &_tcp_error); if(_in_lwip_thread){ tcp_connect(pcb, &addr, port,(tcp_connected_fn)&_s_connected); } else { _tcp_connect(pcb, &addr, port,(tcp_connected_fn)&_s_connected); } return true; } AsyncClient& AsyncClient::operator=(const AsyncClient& other){ if (_pcb) _close(); _pcb = other._pcb; if (_pcb) { _rx_last_packet = millis(); tcp_arg(_pcb, this); tcp_recv(_pcb, &_tcp_recv); tcp_sent(_pcb, &_tcp_sent); tcp_err(_pcb, &_tcp_error); tcp_poll(_pcb, &_tcp_poll, 1); } return *this; } int8_t AsyncClient::_connected(void* pcb, int8_t err){ _pcb = reinterpret_cast<tcp_pcb*>(pcb); if(_pcb){ _rx_last_packet = millis(); _pcb_busy = false; tcp_recv(_pcb, &_tcp_recv); tcp_sent(_pcb, &_tcp_sent); tcp_poll(_pcb, &_tcp_poll, 1); } _in_lwip_thread = true; if(_connect_cb) _connect_cb(_connect_cb_arg, this); _in_lwip_thread = false; return ERR_OK; } int8_t AsyncClient::_close(){ //ets_printf("X: 0x%08x\n", (uint32_t)this); int8_t err = ERR_OK; if(_pcb) { //log_i(""); tcp_arg(_pcb, NULL); tcp_sent(_pcb, NULL); tcp_recv(_pcb, NULL); tcp_err(_pcb, NULL); tcp_poll(_pcb, NULL, 0); _tcp_clear_events(this); if(_in_lwip_thread){ err = tcp_close(_pcb); } else { err = _tcp_close(_pcb); } if(err != ERR_OK) { err = abort(); } _pcb = NULL; if(_discard_cb) _discard_cb(_discard_cb_arg, this); } return err; } void AsyncClient::_error(int8_t err) { if(_pcb){ tcp_arg(_pcb, NULL); tcp_sent(_pcb, NULL); tcp_recv(_pcb, NULL); tcp_err(_pcb, NULL); tcp_poll(_pcb, NULL, 0); _pcb = NULL; } if(_error_cb) _error_cb(_error_cb_arg, this, err); if(_discard_cb) _discard_cb(_discard_cb_arg, this); } int8_t AsyncClient::_sent(tcp_pcb* pcb, uint16_t len) { _in_lwip_thread = false; _rx_last_packet = millis(); //log_i("%u", len); _pcb_busy = false; if(_sent_cb) _sent_cb(_sent_cb_arg, this, len, (millis() - _pcb_sent_at)); return ERR_OK; } int8_t AsyncClient::_recv(tcp_pcb* pcb, pbuf* pb, int8_t err) { if(!_pcb || pcb != _pcb){ log_e("0x%08x != 0x%08x", (uint32_t)pcb, (uint32_t)_pcb); if(pb){ pbuf_free(pb); } return ERR_OK; } _in_lwip_thread = false; if(pb == NULL){ return _close(); } while(pb != NULL){ _rx_last_packet = millis(); //we should not ack before we assimilate the data //log_i("%u", pb->len); //Serial.write((const uint8_t *)pb->payload, pb->len); _ack_pcb = true; pbuf *b = pb; pb = b->next; b->next = NULL; if(_pb_cb){ _pb_cb(_pb_cb_arg, this, b); } else { if(_recv_cb) _recv_cb(_recv_cb_arg, this, b->payload, b->len); if(!_ack_pcb) _rx_ack_len += b->len; else _tcp_recved(pcb, b->len); pbuf_free(b); } } return ERR_OK; } int8_t AsyncClient::_poll(tcp_pcb* pcb){ _in_lwip_thread = false; // Close requested if(_close_pcb){ _close_pcb = false; _close(); return ERR_OK; } uint32_t now = millis(); // ACK Timeout if(_pcb_busy && _ack_timeout && (now - _pcb_sent_at) >= _ack_timeout){ _pcb_busy = false; log_w("ack timeout %d", pcb->state); if(_timeout_cb) _timeout_cb(_timeout_cb_arg, this, (now - _pcb_sent_at)); return ERR_OK; } // RX Timeout if(_rx_since_timeout && (now - _rx_last_packet) >= (_rx_since_timeout * 1000)){ log_w("rx timeout %d", pcb->state); _close(); return ERR_OK; } // Everything is fine if(_poll_cb) _poll_cb(_poll_cb_arg, this); return ERR_OK; } void AsyncClient::_dns_found(struct ip_addr *ipaddr){ _in_lwip_thread = true; if(ipaddr){ connect(IPAddress(ipaddr->u_addr.ip4.addr), _connect_port); } else { log_e("dns fail"); if(_error_cb) _error_cb(_error_cb_arg, this, -55); if(_discard_cb) _discard_cb(_discard_cb_arg, this); } _in_lwip_thread = false; } bool AsyncClient::operator==(const AsyncClient &other) { return _pcb == other._pcb; } bool AsyncClient::connect(const char* host, uint16_t port){ ip_addr_t addr; err_t err = dns_gethostbyname(host, &addr, (dns_found_callback)&_s_dns_found, this); if(err == ERR_OK) { return connect(IPAddress(addr.u_addr.ip4.addr), port); } else if(err == ERR_INPROGRESS) { _connect_port = port; return true; } log_e("error: %d", err); return false; } int8_t AsyncClient::abort(){ if(_pcb) { log_w("state %d", _pcb->state); if(_in_lwip_thread){ tcp_abort(_pcb); } else { _tcp_abort(_pcb); } _pcb = NULL; } return ERR_ABRT; } void AsyncClient::close(bool now){ if(_pcb){ if(_in_lwip_thread){ tcp_recved(_pcb, _rx_ack_len); } else { _tcp_recved(_pcb, _rx_ack_len); } } if(now) _close(); else _close_pcb = true; } void AsyncClient::stop() { close(false); } bool AsyncClient::free(){ if(!_pcb) return true; if(_pcb->state == 0 || _pcb->state > 4) return true; return false; } size_t AsyncClient::space(){ if((_pcb != NULL) && (_pcb->state == 4)){ return tcp_sndbuf(_pcb); } return 0; } size_t AsyncClient::write(const char* data) { if(data == NULL) return 0; return write(data, strlen(data)); } size_t AsyncClient::write(const char* data, size_t size, uint8_t apiflags) { size_t will_send = add(data, size, apiflags); if(!will_send || !send()) return 0; return will_send; } size_t AsyncClient::add(const char* data, size_t size, uint8_t apiflags) { if(!_pcb || size == 0 || data == NULL) return 0; size_t room = space(); if(!room) return 0; size_t will_send = (room < size) ? room : size; int8_t err = ERR_OK; if(_in_lwip_thread){ err = tcp_write(_pcb, data, will_send, apiflags); } else { err = _tcp_write(_pcb, data, will_send, apiflags); } if(err != ERR_OK) return 0; return will_send; } bool AsyncClient::send(){ int8_t err = ERR_OK; if(_in_lwip_thread){ err = tcp_output(_pcb); } else { err = _tcp_output(_pcb); } if(err == ERR_OK){ _pcb_busy = true; _pcb_sent_at = millis(); return true; } return false; } size_t AsyncClient::ack(size_t len){ if(len > _rx_ack_len) len = _rx_ack_len; if(len){ if(_in_lwip_thread){ tcp_recved(_pcb, len); } else { _tcp_recved(_pcb, len); } } _rx_ack_len -= len; return len; } // Operators AsyncClient & AsyncClient::operator+=(const AsyncClient &other) { if(next == NULL){ next = (AsyncClient*)(&other); next->prev = this; } else { AsyncClient *c = next; while(c->next != NULL) c = c->next; c->next =(AsyncClient*)(&other); c->next->prev = c; } return *this; } void AsyncClient::setRxTimeout(uint32_t timeout){ _rx_since_timeout = timeout; } uint32_t AsyncClient::getRxTimeout(){ return _rx_since_timeout; } uint32_t AsyncClient::getAckTimeout(){ return _ack_timeout; } void AsyncClient::setAckTimeout(uint32_t timeout){ _ack_timeout = timeout; } void AsyncClient::setNoDelay(bool nodelay){ if(!_pcb) return; if(nodelay) tcp_nagle_disable(_pcb); else tcp_nagle_enable(_pcb); } bool AsyncClient::getNoDelay(){ if(!_pcb) return false; return tcp_nagle_disabled(_pcb); } uint16_t AsyncClient::getMss(){ if(_pcb) return tcp_mss(_pcb); return 0; } uint32_t AsyncClient::getRemoteAddress() { if(!_pcb) return 0; return _pcb->remote_ip.u_addr.ip4.addr; } uint16_t AsyncClient::getRemotePort() { if(!_pcb) return 0; return _pcb->remote_port; } uint32_t AsyncClient::getLocalAddress() { if(!_pcb) return 0; return _pcb->local_ip.u_addr.ip4.addr; } uint16_t AsyncClient::getLocalPort() { if(!_pcb) return 0; return _pcb->local_port; } IPAddress AsyncClient::remoteIP() { return IPAddress(getRemoteAddress()); } uint16_t AsyncClient::remotePort() { return getRemotePort(); } IPAddress AsyncClient::localIP() { return IPAddress(getLocalAddress()); } uint16_t AsyncClient::localPort() { return getLocalPort(); } uint8_t AsyncClient::state() { if(!_pcb) return 0; return _pcb->state; } bool AsyncClient::connected(){ if (!_pcb) return false; return _pcb->state == 4; } bool AsyncClient::connecting(){ if (!_pcb) return false; return _pcb->state > 0 && _pcb->state < 4; } bool AsyncClient::disconnecting(){ if (!_pcb) return false; return _pcb->state > 4 && _pcb->state < 10; } bool AsyncClient::disconnected(){ if (!_pcb) return true; return _pcb->state == 0 || _pcb->state == 10; } bool AsyncClient::freeable(){ if (!_pcb) return true; return _pcb->state == 0 || _pcb->state > 4; } bool AsyncClient::canSend(){ return space() > 0; } void AsyncClient::ackPacket(struct pbuf * pb){ if(!pb){ return; } _tcp_recved(_pcb, pb->len); pbuf_free(pb); } // Callback Setters void AsyncClient::onConnect(AcConnectHandler cb, void* arg){ _connect_cb = cb; _connect_cb_arg = arg; } void AsyncClient::onDisconnect(AcConnectHandler cb, void* arg){ _discard_cb = cb; _discard_cb_arg = arg; } void AsyncClient::onAck(AcAckHandler cb, void* arg){ _sent_cb = cb; _sent_cb_arg = arg; } void AsyncClient::onError(AcErrorHandler cb, void* arg){ _error_cb = cb; _error_cb_arg = arg; } void AsyncClient::onData(AcDataHandler cb, void* arg){ _recv_cb = cb; _recv_cb_arg = arg; } void AsyncClient::onPacket(AcPacketHandler cb, void* arg){ _pb_cb = cb; _pb_cb_arg = arg; } void AsyncClient::onTimeout(AcTimeoutHandler cb, void* arg){ _timeout_cb = cb; _timeout_cb_arg = arg; } void AsyncClient::onPoll(AcConnectHandler cb, void* arg){ _poll_cb = cb; _poll_cb_arg = arg; } void AsyncClient::_s_dns_found(const char * name, struct ip_addr * ipaddr, void * arg){ if(arg){ reinterpret_cast<AsyncClient*>(arg)->_dns_found(ipaddr); } else { log_e("Bad Arg: 0x%08x", arg); } } int8_t AsyncClient::_s_poll(void * arg, struct tcp_pcb * pcb) { if(arg && pcb){ reinterpret_cast<AsyncClient*>(arg)->_poll(pcb); } else { log_e("Bad Args: 0x%08x 0x%08x", arg, pcb); } return ERR_OK; } int8_t AsyncClient::_s_recv(void * arg, struct tcp_pcb * pcb, struct pbuf *pb, int8_t err) { if(arg && pcb){ reinterpret_cast<AsyncClient*>(arg)->_recv(pcb, pb, err); } else { if(pb){ pbuf_free(pb); } log_e("Bad Args: 0x%08x 0x%08x", arg, pcb); } return ERR_OK; } int8_t AsyncClient::_s_sent(void * arg, struct tcp_pcb * pcb, uint16_t len) { if(arg && pcb){ reinterpret_cast<AsyncClient*>(arg)->_sent(pcb, len); } else { log_e("Bad Args: 0x%08x 0x%08x", arg, pcb); } return ERR_OK; } void AsyncClient::_s_error(void * arg, int8_t err) { if(arg){ reinterpret_cast<AsyncClient*>(arg)->_error(err); } else { log_e("Bad Arg: 0x%08x", arg); } } int8_t AsyncClient::_s_connected(void * arg, void * pcb, int8_t err){ if(arg && pcb){ reinterpret_cast<AsyncClient*>(arg)->_connected(pcb, err); } else { log_e("Bad Args: 0x%08x 0x%08x", arg, pcb); } return ERR_OK; } const char * AsyncClient::errorToString(int8_t error){ switch(error){ case 0: return "OK"; case -1: return "Out of memory error"; case -2: return "Buffer error"; case -3: return "Timeout"; case -4: return "Routing problem"; case -5: return "Operation in progress"; case -6: return "Illegal value"; case -7: return "Operation would block"; case -8: return "Connection aborted"; case -9: return "Connection reset"; case -10: return "Connection closed"; case -11: return "Not connected"; case -12: return "Illegal argument"; case -13: return "Address in use"; case -14: return "Low-level netif error"; case -15: return "Already connected"; case -55: return "DNS failed"; default: return "UNKNOWN"; } } const char * AsyncClient::stateToString(){ switch(state()){ case 0: return "Closed"; case 1: return "Listen"; case 2: return "SYN Sent"; case 3: return "SYN Received"; case 4: return "Established"; case 5: return "FIN Wait 1"; case 6: return "FIN Wait 2"; case 7: return "Close Wait"; case 8: return "Closing"; case 9: return "Last ACK"; case 10: return "Time Wait"; default: return "UNKNOWN"; } } /* Async TCP Server */ struct pending_pcb { tcp_pcb* pcb; pbuf *pb; struct pending_pcb * next; }; AsyncServer::AsyncServer(IPAddress addr, uint16_t port) : _port(port) , _addr(addr) , _noDelay(false) , _in_lwip_thread(false) , _pcb(0) , _connect_cb(0) , _connect_cb_arg(0) {} AsyncServer::AsyncServer(uint16_t port) : _port(port) , _addr((uint32_t) IPADDR_ANY) , _noDelay(false) , _in_lwip_thread(false) , _pcb(0) , _connect_cb(0) , _connect_cb_arg(0) {} AsyncServer::~AsyncServer(){ end(); } void AsyncServer::onClient(AcConnectHandler cb, void* arg){ _connect_cb = cb; _connect_cb_arg = arg; } int8_t AsyncServer::_s_accept(void * arg, tcp_pcb * pcb, int8_t err){ reinterpret_cast<AsyncServer*>(arg)->_accept(pcb, err); return ERR_OK; } int8_t AsyncServer::_accept(tcp_pcb* pcb, int8_t err){ tcp_accepted(_pcb); if(_connect_cb){ if (_noDelay) tcp_nagle_disable(pcb); else tcp_nagle_enable(pcb); AsyncClient *c = new AsyncClient(pcb); if(c){ _in_lwip_thread = true; c->_in_lwip_thread = true; _connect_cb(_connect_cb_arg, c); c->_in_lwip_thread = false; _in_lwip_thread = false; return ERR_OK; } } if(tcp_close(pcb) != ERR_OK){ tcp_abort(pcb); } log_e("FAIL"); return ERR_OK; } void AsyncServer::begin(){ if(_pcb) return; if(!_start_async_task()){ log_e("failed to start task"); return; } int8_t err; _pcb = tcp_new_ip_type(IPADDR_TYPE_V4); if (!_pcb){ log_e("_pcb == NULL"); return; } ip_addr_t local_addr; local_addr.type = IPADDR_TYPE_V4; local_addr.u_addr.ip4.addr = (uint32_t) _addr; err = _tcp_bind(_pcb, &local_addr, _port); if (err != ERR_OK) { _tcp_close(_pcb); log_e("bind error: %d", err); return; } static uint8_t backlog = 5; _pcb = _tcp_listen_with_backlog(_pcb, backlog); //_pcb = _tcp_listen(_pcb); if (!_pcb) { log_e("listen_pcb == NULL"); return; } tcp_arg(_pcb, (void*) this); tcp_accept(_pcb, &_s_accept); } void AsyncServer::end(){ if(_pcb){ tcp_arg(_pcb, NULL); tcp_accept(_pcb, NULL); if(_in_lwip_thread){ tcp_close(_pcb); } else { _tcp_close(_pcb); } _pcb = NULL; } } void AsyncServer::setNoDelay(bool nodelay){ _noDelay = nodelay; } bool AsyncServer::getNoDelay(){ return _noDelay; } uint8_t AsyncServer::status(){ if (!_pcb) return 0; return _pcb->state; }