Files
Scanning the repository...
Last update 10 months 2 weeks
by Faizan Shaikh
TinyReflowController.ino/******************************************************************************* Title: Tiny Reflow Controller Version: 2.00 Date: 03-03-2019 Company: Rocket Scream Electronics Author: Lim Phang Moh Website: www.rocketscream.com Brief ===== This is an example firmware for our Arduino compatible Tiny Reflow Controller. A big portion of the code is copied over from our Reflow Oven Controller Shield. We added both lead-free and leaded reflow profile support in this firmware which can be selected by pressing switch #2 (labelled as LF|PB on PCB) during system idle. The unit will remember the last selected reflow profile. You'll need to use the MAX31856 library for Arduino. Lead-Free Reflow Curve ====================== Temperature (Degree Celcius) Magic Happens Here! 245-| x x | x x | x x | x x 200-| x x | x | | x | x | | x | x | | 150-| x | | | x | | | | x | | | | x | | | | x | | | | x | | | | x | | | 30 -| x | | | |< 60 - 90 s >|< 90 - 120 s >|< 90 - 120 s >| | Preheat Stage | Soaking Stage | Reflow Stage | Cool 0 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ |_ _ _ _ _ Time (Seconds) Leaded Reflow Curve (Kester EP256) ================================== Temperature (Degree Celcius) Magic Happens Here! 219-| x x | x x | x x 180-| x x | x | | x | x | | x 150-| x | | x | x | | | | x | | | | x | | | | x | | | | x | | | | x | | | 30 -| x | | | |< 60 - 90 s >|< 60 - 90 s >|< 60 - 90 s >| | Preheat Stage | Soaking Stage| Reflow Stage | Cool 0 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ _ _ Time (Seconds) This firmware owed very much on the works of other talented individuals as follows: ========================================== Brett Beauregard (www.brettbeauregard.com) ========================================== Author of Arduino PID library. On top of providing industry standard PID implementation, he gave a lot of help in making this reflow oven controller possible using his awesome library. ========================================== Limor Fried of Adafruit (www.adafruit.com) ========================================== Author of Arduino MAX31856 and SSD1306 libraries. Adafruit has been the source of tonnes of tutorials, examples, and libraries for everyone to learn. ========================================== Spence Konde (www.drazzy.com/e/) ========================================== Maintainer of the ATtiny core for Arduino: https://github.com/SpenceKonde/ATTinyCore Disclaimer ========== Dealing with high voltage is a very dangerous act! Please make sure you know what you are dealing with and have proper knowledge before hand. Your use of any information or materials on this Tiny Reflow Controller is entirely at your own risk, for which we shall not be liable. Licences ======== This Tiny Reflow Controller hardware and firmware are released under the Creative Commons Share Alike v3.0 license http://creativecommons.org/licenses/by-sa/3.0/ You are free to take this piece of code, use it and modify it. All we ask is attribution including the supporting libraries used in this firmware. Required Libraries ================== - Arduino PID Library: >> https://github.com/br3ttb/Arduino-PID-Library - Adafruit MAX31856 Library: >> https://github.com/adafruit/Adafruit_MAX31856 - Adafruit SSD1306 Library: >> https://github.com/adafruit/Adafruit_SSD1306 - Adafruit GFX Library: >> https://github.com/adafruit/Adafruit-GFX-Library Revision Description ======== =========== 2.00 Support V2 of the Tiny Reflow Controller: - Based on ATMega328P 3.3V @ 8MHz - Uses SSD1306 128x64 OLED 1.00 Initial public release: - Based on ATtiny1634R 3.3V @ 8MHz - Uses 8x2 alphanumeric LCD *******************************************************************************/ // ***** INCLUDES ***** #include <SPI.h> #include <Wire.h> #include <EEPROM.h> #include <LiquidCrystal.h> #include <Adafruit_GFX.h> // Comment for VERSION 1 #include <Adafruit_SSD1306.h> // Comment for VERSION 1 #include <Adafruit_MAX31856.h> #include <PID_v1.h> // ***** TYPE DEFINITIONS ***** typedef enum REFLOW_STATE { REFLOW_STATE_IDLE, REFLOW_STATE_PREHEAT, REFLOW_STATE_SOAK, REFLOW_STATE_REFLOW, REFLOW_STATE_COOL, REFLOW_STATE_COMPLETE, REFLOW_STATE_TOO_HOT, REFLOW_STATE_ERROR } reflowState_t; typedef enum REFLOW_STATUS { REFLOW_STATUS_OFF, REFLOW_STATUS_ON } reflowStatus_t; typedef enum SWITCH { SWITCH_NONE, SWITCH_1, SWITCH_2 } switch_t; typedef enum DEBOUNCE_STATE { DEBOUNCE_STATE_IDLE, DEBOUNCE_STATE_CHECK, DEBOUNCE_STATE_RELEASE } debounceState_t; typedef enum REFLOW_PROFILE { REFLOW_PROFILE_LEADFREE, REFLOW_PROFILE_LEADED } reflowProfile_t; // ***** CONSTANTS ***** // ***** GENERAL ***** #define VERSION 2 // Replace with 1 or 2 // ***** GENERAL PROFILE CONSTANTS ***** #define PROFILE_TYPE_ADDRESS 0 #define TEMPERATURE_ROOM 50 #define TEMPERATURE_SOAK_MIN 150 #define TEMPERATURE_COOL_MIN 100 #define SENSOR_SAMPLING_TIME 1000 #define SOAK_TEMPERATURE_STEP 5 // ***** LEAD FREE PROFILE CONSTANTS ***** #define TEMPERATURE_SOAK_MAX_LF 200 #define TEMPERATURE_REFLOW_MAX_LF 250 #define SOAK_MICRO_PERIOD_LF 9000 // ***** LEADED PROFILE CONSTANTS ***** #define TEMPERATURE_SOAK_MAX_PB 180 #define TEMPERATURE_REFLOW_MAX_PB 224 #define SOAK_MICRO_PERIOD_PB 10000 // ***** SWITCH SPECIFIC CONSTANTS ***** #define DEBOUNCE_PERIOD_MIN 100 // ***** DISPLAY SPECIFIC CONSTANTS ***** #define UPDATE_RATE 100 // ***** PID PARAMETERS ***** // ***** PRE-HEAT STAGE ***** #define PID_KP_PREHEAT 100 #define PID_KI_PREHEAT 0.025 #define PID_KD_PREHEAT 20 // ***** SOAKING STAGE ***** #define PID_KP_SOAK 300 #define PID_KI_SOAK 0.05 #define PID_KD_SOAK 250 // ***** REFLOW STAGE ***** #define PID_KP_REFLOW 300 #define PID_KI_REFLOW 0.05 #define PID_KD_REFLOW 350 #define PID_SAMPLE_TIME 1000 #if VERSION == 2 #define SCREEN_WIDTH 128 // OLED display width, in pixels #define SCREEN_HEIGHT 64 // OLED display height, in pixels #define X_AXIS_START 18 // X-axis starting position #endif // ***** LCD MESSAGES ***** const char* lcdMessagesReflowStatus[] = { "Ready", "Pre", "Soak", "Reflow", "Cool", "Done!", "Hot!", "Error" }; // ***** DEGREE SYMBOL FOR LCD ***** unsigned char degree[8] = { 140, 146, 146, 140, 128, 128, 128, 128 }; // ***** PIN ASSIGNMENT ***** #if VERSION == 1 unsigned char ssrPin = 3; unsigned char thermocoupleCSPin = 2; unsigned char lcdRsPin = 10; unsigned char lcdEPin = 9; unsigned char lcdD4Pin = 8; unsigned char lcdD5Pin = 7; unsigned char lcdD6Pin = 6; unsigned char lcdD7Pin = 5; unsigned char buzzerPin = 14; unsigned char switchPin = A1; unsigned char ledPin = LED_BUILTIN; #elif VERSION == 2 unsigned char ssrPin = A0; unsigned char fanPin = A1; unsigned char thermocoupleCSPin = 10; unsigned char ledPin = 4; unsigned char buzzerPin = 5; unsigned char switchStartStopPin = 3; unsigned char switchLfPbPin = 2; #endif // ***** PID CONTROL VARIABLES ***** double setpoint; double input; double output; double kp = PID_KP_PREHEAT; double ki = PID_KI_PREHEAT; double kd = PID_KD_PREHEAT; int windowSize; unsigned long windowStartTime; unsigned long nextCheck; unsigned long nextRead; unsigned long updateLcd; unsigned long timerSoak; unsigned long buzzerPeriod; unsigned char soakTemperatureMax; unsigned char reflowTemperatureMax; unsigned long soakMicroPeriod; // Reflow oven controller state machine state variable reflowState_t reflowState; // Reflow oven controller status reflowStatus_t reflowStatus; // Reflow profile type reflowProfile_t reflowProfile; // Switch debounce state machine state variable debounceState_t debounceState; // Switch debounce timer long lastDebounceTime; // Switch press status switch_t switchStatus; switch_t switchValue; switch_t switchMask; // Seconds timer unsigned int timerSeconds; // Thermocouple fault status unsigned char fault; #ifdef VERSION == 2 unsigned int timerUpdate; unsigned char temperature[SCREEN_WIDTH - X_AXIS_START]; unsigned char x; #endif // PID control interface PID reflowOvenPID(&input, &output, &setpoint, kp, ki, kd, DIRECT); #if VERSION == 1 // LCD interface LiquidCrystal lcd(lcdRsPin, lcdEPin, lcdD4Pin, lcdD5Pin, lcdD6Pin, lcdD7Pin); #elif VERSION == 2 Adafruit_SSD1306 oled(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire); #endif // MAX31856 thermocouple interface Adafruit_MAX31856 thermocouple = Adafruit_MAX31856(thermocoupleCSPin); void setup() { // Check current selected reflow profile unsigned char value = EEPROM.read(PROFILE_TYPE_ADDRESS); if ((value == 0) || (value == 1)) { // Valid reflow profile value reflowProfile = value; } else { // Default to lead-free profile EEPROM.write(PROFILE_TYPE_ADDRESS, 0); reflowProfile = REFLOW_PROFILE_LEADFREE; } // SSR pin initialization to ensure reflow oven is off digitalWrite(ssrPin, LOW); pinMode(ssrPin, OUTPUT); // Buzzer pin initialization to ensure annoying buzzer is off digitalWrite(buzzerPin, LOW); pinMode(buzzerPin, OUTPUT); // LED pins initialization and turn on upon start-up (active high) pinMode(ledPin, OUTPUT); digitalWrite(ledPin, HIGH); // Initialize thermocouple interface thermocouple.begin(); thermocouple.setThermocoupleType(MAX31856_TCTYPE_K); // Start-up splash digitalWrite(buzzerPin, HIGH); #if VERSION == 1 lcd.begin(8, 2); lcd.createChar(0, degree); lcd.clear(); lcd.print(F(" Tiny ")); lcd.setCursor(0, 1); lcd.print(F(" Reflow ")); #elif VERSION == 2 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); oled.display(); #endif digitalWrite(buzzerPin, LOW); delay(2000); #if VERSION == 1 lcd.clear(); lcd.print(F(" v1.00 ")); lcd.setCursor(0, 1); lcd.print(F("26-07-17")); delay(2000); lcd.clear(); #elif VERSION == 2 oled.clearDisplay(); oled.setTextSize(1); oled.setTextColor(WHITE); oled.setCursor(0, 0); oled.println(F(" Tiny Reflow")); oled.println(F(" Controller")); oled.println(); oled.println(F(" v2.00")); oled.println(); oled.println(F(" 04-03-19")); oled.display(); delay(3000); oled.clearDisplay(); #endif // Serial communication at 115200 bps Serial.begin(115200); // Turn off LED (active high) digitalWrite(ledPin, LOW); // Set window size windowSize = 2000; // Initialize time keeping variable nextCheck = millis(); // Initialize thermocouple reading variable nextRead = millis(); // Initialize LCD update timer updateLcd = millis(); } void loop() { // Current time unsigned long now; // Time to read thermocouple? if (millis() > nextRead) { // Read thermocouple next sampling period nextRead += SENSOR_SAMPLING_TIME; // Read current temperature input = thermocouple.readThermocoupleTemperature(); // Check for thermocouple fault fault = thermocouple.readFault(); // If any thermocouple fault is detected if ((fault & MAX31856_FAULT_CJRANGE) || (fault & MAX31856_FAULT_TCRANGE) || (fault & MAX31856_FAULT_CJHIGH) || (fault & MAX31856_FAULT_CJLOW) || (fault & MAX31856_FAULT_TCHIGH) || (fault & MAX31856_FAULT_TCLOW) || (fault & MAX31856_FAULT_OVUV) || (fault & MAX31856_FAULT_OPEN)) { // Illegal operation reflowState = REFLOW_STATE_ERROR; reflowStatus = REFLOW_STATUS_OFF; Serial.println(F("Error")); } } if (millis() > nextCheck) { // Check input in the next seconds nextCheck += SENSOR_SAMPLING_TIME; // If reflow process is on going if (reflowStatus == REFLOW_STATUS_ON) { // Toggle red LED as system heart beat digitalWrite(ledPin, !(digitalRead(ledPin))); // Increase seconds timer for reflow curve plot timerSeconds++; // Send temperature and time stamp to serial Serial.print(timerSeconds); Serial.print(F(",")); Serial.print(setpoint); Serial.print(F(",")); Serial.print(input); Serial.print(F(",")); Serial.println(output); } else { // Turn off red LED digitalWrite(ledPin, LOW); } } if (millis() > updateLcd) { // Update LCD in the next 100 ms updateLcd += UPDATE_RATE; #if VERSION == 1 // Clear LCD lcd.clear(); // Print current system state lcd.print(lcdMessagesReflowStatus[reflowState]); lcd.setCursor(6, 0); if (reflowProfile == REFLOW_PROFILE_LEADFREE) { lcd.print(F("LF")); } else { lcd.print(F("PB")); } lcd.setCursor(0, 1); // If currently in error state if (reflowState == REFLOW_STATE_ERROR) { // Thermocouple error (open, shorted) lcd.print(F("TC Error")); } else { // Display current temperature lcd.print(input); #if ARDUINO >= 100 // Display degree Celsius symbol lcd.write((uint8_t)0); #else // Display degree Celsius symbol lcd.print(0, BYTE); #endif lcd.print("C "); } #elif VERSION == 2 oled.clearDisplay(); oled.setTextSize(2); oled.setCursor(0, 0); oled.print(lcdMessagesReflowStatus[reflowState]); oled.setTextSize(1); oled.setCursor(115, 0); if (reflowProfile == REFLOW_PROFILE_LEADFREE) { oled.print(F("LF")); } else { oled.print(F("PB")); } // Temperature markers oled.setCursor(0, 18); oled.print(F("250")); oled.setCursor(0, 36); oled.print(F("150")); oled.setCursor(0, 54); oled.print(F("50")); // Draw temperature and time axis oled.drawLine(18, 18, 18, 63, WHITE); oled.drawLine(18, 63, 127, 63, WHITE); oled.setCursor(115, 0); // If currently in error state if (reflowState == REFLOW_STATE_ERROR) { oled.setCursor(80, 9); oled.print(F("TC Error")); } else { // Right align temperature reading if (input < 10) oled.setCursor(91, 9); else if (input < 100) oled.setCursor(85,9); else oled.setCursor(80, 9); // Display current temperature oled.print(input); oled.print((char)247); oled.print(F("C")); } if (reflowStatus == REFLOW_STATUS_ON) { // We are updating the display faster than sensor reading if (timerSeconds > timerUpdate) { // Store temperature reading every 3 s if ((timerSeconds % 3) == 0) { timerUpdate = timerSeconds; unsigned char averageReading = map(input, 0, 250, 63, 19); if (x < (SCREEN_WIDTH - X_AXIS_START)) { temperature[x++] = averageReading; } } } } unsigned char timeAxis; for (timeAxis = 0; timeAxis < x; timeAxis++) { oled.drawPixel(timeAxis + X_AXIS_START, temperature[timeAxis], WHITE); } // Update screen oled.display(); #endif } // Reflow oven controller state machine switch (reflowState) { case REFLOW_STATE_IDLE: // If oven temperature is still above room temperature if (input >= TEMPERATURE_ROOM) { reflowState = REFLOW_STATE_TOO_HOT; } else { // If switch is pressed to start reflow process if (switchStatus == SWITCH_1) { // Send header for CSV file Serial.println(F("Time,Setpoint,Input,Output")); // Intialize seconds timer for serial debug information timerSeconds = 0; #if VERSION == 2 // Initialize reflow plot update timer timerUpdate = 0; for (x = 0; x < (SCREEN_WIDTH - X_AXIS_START); x++) { temperature[x] = 0; } // Initialize index for average temperature array used for reflow plot x = 0; #endif // Initialize PID control window starting time windowStartTime = millis(); // Ramp up to minimum soaking temperature setpoint = TEMPERATURE_SOAK_MIN; // Load profile specific constant if (reflowProfile == REFLOW_PROFILE_LEADFREE) { soakTemperatureMax = TEMPERATURE_SOAK_MAX_LF; reflowTemperatureMax = TEMPERATURE_REFLOW_MAX_LF; soakMicroPeriod = SOAK_MICRO_PERIOD_LF; } else { soakTemperatureMax = TEMPERATURE_SOAK_MAX_PB; reflowTemperatureMax = TEMPERATURE_REFLOW_MAX_PB; soakMicroPeriod = SOAK_MICRO_PERIOD_PB; } // Tell the PID to range between 0 and the full window size reflowOvenPID.SetOutputLimits(0, windowSize); reflowOvenPID.SetSampleTime(PID_SAMPLE_TIME); // Turn the PID on reflowOvenPID.SetMode(AUTOMATIC); // Proceed to preheat stage reflowState = REFLOW_STATE_PREHEAT; } } break; case REFLOW_STATE_PREHEAT: reflowStatus = REFLOW_STATUS_ON; // If minimum soak temperature is achieve if (input >= TEMPERATURE_SOAK_MIN) { // Chop soaking period into smaller sub-period timerSoak = millis() + soakMicroPeriod; // Set less agressive PID parameters for soaking ramp reflowOvenPID.SetTunings(PID_KP_SOAK, PID_KI_SOAK, PID_KD_SOAK); // Ramp up to first section of soaking temperature setpoint = TEMPERATURE_SOAK_MIN + SOAK_TEMPERATURE_STEP; // Proceed to soaking state reflowState = REFLOW_STATE_SOAK; } break; case REFLOW_STATE_SOAK: // If micro soak temperature is achieved if (millis() > timerSoak) { timerSoak = millis() + soakMicroPeriod; // Increment micro setpoint setpoint += SOAK_TEMPERATURE_STEP; if (setpoint > soakTemperatureMax) { // Set agressive PID parameters for reflow ramp reflowOvenPID.SetTunings(PID_KP_REFLOW, PID_KI_REFLOW, PID_KD_REFLOW); // Ramp up to first section of soaking temperature setpoint = reflowTemperatureMax; // Proceed to reflowing state reflowState = REFLOW_STATE_REFLOW; } } break; case REFLOW_STATE_REFLOW: // We need to avoid hovering at peak temperature for too long // Crude method that works like a charm and safe for the components if (input >= (reflowTemperatureMax - 5)) { // Set PID parameters for cooling ramp reflowOvenPID.SetTunings(PID_KP_REFLOW, PID_KI_REFLOW, PID_KD_REFLOW); // Ramp down to minimum cooling temperature setpoint = TEMPERATURE_COOL_MIN; // Proceed to cooling state reflowState = REFLOW_STATE_COOL; } break; case REFLOW_STATE_COOL: // If minimum cool temperature is achieve if (input <= TEMPERATURE_COOL_MIN) { // Retrieve current time for buzzer usage buzzerPeriod = millis() + 1000; // Turn on buzzer to indicate completion digitalWrite(buzzerPin, HIGH); // Turn off reflow process reflowStatus = REFLOW_STATUS_OFF; // Proceed to reflow Completion state reflowState = REFLOW_STATE_COMPLETE; } break; case REFLOW_STATE_COMPLETE: if (millis() > buzzerPeriod) { // Turn off buzzer digitalWrite(buzzerPin, LOW); // Reflow process ended reflowState = REFLOW_STATE_IDLE; } break; case REFLOW_STATE_TOO_HOT: // If oven temperature drops below room temperature if (input < TEMPERATURE_ROOM) { // Ready to reflow reflowState = REFLOW_STATE_IDLE; } break; case REFLOW_STATE_ERROR: // Check for thermocouple fault fault = thermocouple.readFault(); // If thermocouple problem is still present if ((fault & MAX31856_FAULT_CJRANGE) || (fault & MAX31856_FAULT_TCRANGE) || (fault & MAX31856_FAULT_CJHIGH) || (fault & MAX31856_FAULT_CJLOW) || (fault & MAX31856_FAULT_TCHIGH) || (fault & MAX31856_FAULT_TCLOW) || (fault & MAX31856_FAULT_OVUV) || (fault & MAX31856_FAULT_OPEN)) { // Wait until thermocouple wire is connected reflowState = REFLOW_STATE_ERROR; } else { // Clear to perform reflow process reflowState = REFLOW_STATE_IDLE; } break; } // If switch 1 is pressed if (switchStatus == SWITCH_1) { // If currently reflow process is on going if (reflowStatus == REFLOW_STATUS_ON) { // Button press is for cancelling // Turn off reflow process reflowStatus = REFLOW_STATUS_OFF; // Reinitialize state machine reflowState = REFLOW_STATE_IDLE; } } // Switch 2 is pressed else if (switchStatus == SWITCH_2) { // Only can switch reflow profile during idle if (reflowState == REFLOW_STATE_IDLE) { // Currently using lead-free reflow profile if (reflowProfile == REFLOW_PROFILE_LEADFREE) { // Switch to leaded reflow profile reflowProfile = REFLOW_PROFILE_LEADED; EEPROM.write(PROFILE_TYPE_ADDRESS, 1); } // Currently using leaded reflow profile else { // Switch to lead-free profile reflowProfile = REFLOW_PROFILE_LEADFREE; EEPROM.write(PROFILE_TYPE_ADDRESS, 0); } } } // Switch status has been read switchStatus = SWITCH_NONE; // Simple switch debounce state machine (analog switch) switch (debounceState) { case DEBOUNCE_STATE_IDLE: // No valid switch press switchStatus = SWITCH_NONE; switchValue = readSwitch(); // If either switch is pressed if (switchValue != SWITCH_NONE) { // Keep track of the pressed switch switchMask = switchValue; // Intialize debounce counter lastDebounceTime = millis(); // Proceed to check validity of button press debounceState = DEBOUNCE_STATE_CHECK; } break; case DEBOUNCE_STATE_CHECK: switchValue = readSwitch(); if (switchValue == switchMask) { // If minimum debounce period is completed if ((millis() - lastDebounceTime) > DEBOUNCE_PERIOD_MIN) { // Valid switch press switchStatus = switchMask; // Proceed to wait for button release debounceState = DEBOUNCE_STATE_RELEASE; } } // False trigger else { // Reinitialize button debounce state machine debounceState = DEBOUNCE_STATE_IDLE; } break; case DEBOUNCE_STATE_RELEASE: switchValue = readSwitch(); if (switchValue == SWITCH_NONE) { // Reinitialize button debounce state machine debounceState = DEBOUNCE_STATE_IDLE; } break; } // PID computation and SSR control if (reflowStatus == REFLOW_STATUS_ON) { now = millis(); reflowOvenPID.Compute(); if ((now - windowStartTime) > windowSize) { // Time to shift the Relay Window windowStartTime += windowSize; } if (output > (now - windowStartTime)) digitalWrite(ssrPin, HIGH); else digitalWrite(ssrPin, LOW); } // Reflow oven process is off, ensure oven is off else { digitalWrite(ssrPin, LOW); } } switch_t readSwitch(void) { int switchAdcValue = 0; #if VERSION == 1 // Analog multiplexing switch switchAdcValue = analogRead(switchPin); // Add some allowance (+10 ADC step) as ADC reading might be off a little // due to 3V3 deviation and also resistor value tolerance if (switchAdcValue >= 1000) return SWITCH_NONE; if (switchAdcValue <= 10) return SWITCH_1; if (switchAdcValue <= 522) return SWITCH_2; #elif VERSION == 2 // Switch connected directly to individual separate pins if (digitalRead(switchStartStopPin) == LOW) return SWITCH_1; if (digitalRead(switchLfPbPin) == LOW) return SWITCH_2; #endif return SWITCH_NONE; }