Files

copied
Last update 6 years 3 months by Olivier Gillet
Fileswarps
..
bootloader
drivers
dsp
hardware_design
resources
test
tools
__init__.py
cv_scaler.cc
cv_scaler.h
makefile
meter.h
resources.cc
resources.h
settings.cc
settings.h
ui.cc
ui.h
warps.cc
ui.cc
// Copyright 2014 Olivier Gillet. // // Author: Olivier Gillet (ol.gillet@gmail.com) // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // See http://creativecommons.org/licenses/MIT/ for more information. // // ----------------------------------------------------------------------------- // // User interface. #include "warps/ui.h" #include <algorithm> #include "stmlib/system/system_clock.h" #include "stmlib/dsp/units.h" #include "warps/cv_scaler.h" namespace warps { using namespace std; using namespace stmlib; /* static */ const uint8_t Ui::palette_[10][3] = { { 0, 192, 64 }, { 64, 255, 0 }, { 255, 255, 0 }, { 255, 64, 0 }, { 255, 0, 0 }, { 255, 0, 64 }, { 255, 0, 255 }, { 0, 0, 255 }, { 0, 255, 192 }, { 0, 255, 192 }, }; /* static */ const uint8_t Ui::easter_egg_palette_[10][3] = { { 0, 0, 64 }, { 0, 0, 255 }, { 0, 255, 192 }, { 0, 192, 64 }, { 64, 255, 0 }, { 255, 255, 0 }, { 255, 192, 0 }, { 255, 64, 0 }, { 255, 0, 0 }, { 255, 0, 0 }, }; void Ui::Init(Settings* settings, CvScaler* cv_scaler, Modulator* modulator) { leds_.Init(); switches_.Init(); mode_ = UI_MODE_NORMAL; settings_ = settings; cv_scaler_ = cv_scaler; modulator_ = modulator; modulator_->set_easter_egg(settings_->state().boot_in_easter_egg_mode); carrier_shape_ = settings_->state().carrier_shape; UpdateCarrierShape(); } void Ui::UpdateCarrierShape() { modulator_->mutable_parameters()->carrier_shape = carrier_shape_; settings_->mutable_state()->carrier_shape = carrier_shape_; } void Ui::Poll() { // Called at 1.6kHz instead of 1kHz, so the "milliseconds" clock actually runs // 1.6x faster. Not a big deal since it is used only for controlling LED // blinking rate and detecting long button presses. system_clock.Tick(); switches_.Debounce(); if (switches_.just_pressed(0)) { queue_.AddEvent(CONTROL_SWITCH, 0, 0); press_time_ = system_clock.milliseconds(); } if (switches_.pressed(0) && press_time_) { if (cv_scaler_->ready_for_calibration() && (system_clock.milliseconds() - press_time_) >= 4800) { queue_.AddEvent(CONTROL_SWITCH, 1, 0); press_time_ = 0; } else if ((system_clock.milliseconds() - press_time_) >= 9600) { queue_.AddEvent(CONTROL_SWITCH, 2, 0); press_time_ = 0; } } if (switches_.released(0) && press_time_) { queue_.AddEvent( CONTROL_SWITCH, 0, system_clock.milliseconds() - press_time_ + 1); } bool blink = (system_clock.milliseconds() & 127) > 64; bool slow_blink = (system_clock.milliseconds() & 255) > 128; switch (mode_) { case UI_MODE_NORMAL: { uint8_t rgb[3]; float zone; const Parameters& p = modulator_->parameters(); const uint8_t (*palette)[3]; if (modulator_->easter_egg()) { zone = p.phase_shift; palette = easter_egg_palette_; } else { zone = p.modulation_algorithm; palette = palette_; } zone *= 8.0f; MAKE_INTEGRAL_FRACTIONAL(zone); int32_t zone_fractional_i = static_cast<int32_t>( zone_fractional * 256.0f); for (int32_t i = 0; i < 3; ++i) { int32_t a = palette[zone_integral][i]; int32_t b = palette[zone_integral + 1][i]; rgb[i] = a + ((b - a) * zone_fractional_i >> 8); } leds_.set_main(rgb[0], rgb[1], rgb[2]); leds_.set_osc( carrier_shape_ >= 2 ? 255 : 0, carrier_shape_ > 0 && carrier_shape_ <= 2 ? 255 : 0); } break; case UI_MODE_CALIBRATION_C1: leds_.set_main(0, blink ? 255 : 0, blink ? 64 : 0); leds_.set_osc(blink ? 255 : 0, blink ? 255 : 0); break; case UI_MODE_CALIBRATION_C3: leds_.set_main(blink ? 255 : 0, 0, blink ? 32 : 0); leds_.set_osc(blink ? 255 : 0, 0); break; case UI_MODE_CALIBRATION_LOW: leds_.set_main(slow_blink ? 255 : 0, 0, 0); leds_.set_osc(slow_blink ? 255 : 0, 0); break; case UI_MODE_CALIBRATION_HIGH: leds_.set_main(0, slow_blink ? 255 : 0, 0); leds_.set_osc(0, slow_blink ? 255 : 0); break; case UI_MODE_PANIC: case UI_MODE_CALIBRATION_ERROR: leds_.set_osc(blink ? 255 : 0, 0); leds_.set_main(blink ? 255 : 0, 0, 0); break; case UI_MODE_EASTER_EGG_DANCE: { leds_.set_osc(0, blink ? 255 : 0); uint8_t color = (system_clock.milliseconds() >> 9) % 9; leds_.set_main( easter_egg_palette_[color][0], easter_egg_palette_[color][1], easter_egg_palette_[color][2]); } break; } if (modulator_->bypass()) { uint16_t red = system_clock.milliseconds() & 4095; uint16_t green = (system_clock.milliseconds() + 1333) & 4095; uint16_t blue = (system_clock.milliseconds() + 2667) & 4095; green = green < 2048 ? green : 4095 - green; red = red < 2048 ? red : 4095 - red; blue = blue < 2048 ? blue : 4095 - blue; leds_.set_osc(255, 255); leds_.set_main(red >> 3, green >> 3, blue >> 3); } leds_.Write(); } bool Ui::DetectSecretHandshake() { for (int32_t i = 0; i < 5; ++i) { secret_handshake_[i] = secret_handshake_[i + 1]; } secret_handshake_[5] = cv_scaler_->easter_egg_digit(); uint8_t expected[6] = { 2, 4, 3, 6, 1, 5 }; return equal( &secret_handshake_[0], &secret_handshake_[6], &expected[0]); } void Ui::OnSwitchPressed(const Event& e) { switch (e.control_id) { case 0: switch (mode_) { case UI_MODE_CALIBRATION_C1: CalibrateC1(); break; case UI_MODE_CALIBRATION_C3: CalibrateC3(); break; case UI_MODE_CALIBRATION_LOW: CalibrateLow(); break; case UI_MODE_CALIBRATION_HIGH: CalibrateHigh(); break; default: if (!DetectSecretHandshake()) { carrier_shape_ = (carrier_shape_ + 1) & 3; } else { bool easter = !modulator_->easter_egg(); modulator_->set_easter_egg(easter); settings_->mutable_state()->boot_in_easter_egg_mode = easter; carrier_shape_ = 1; mode_ = UI_MODE_EASTER_EGG_DANCE; } UpdateCarrierShape(); settings_->Save(); break; } break; case 1: StartCalibration(); break; case 2: StartNormalizationCalibration(); break; default: break; } } void Ui::OnSwitchReleased(const Event& e) { } void Ui::StartCalibration() { cv_scaler_->StartCalibration(); mode_ = UI_MODE_CALIBRATION_C1; } void Ui::CalibrateC1() { cv_scaler_->CalibrateC1(); cv_scaler_->CalibrateOffsets(); mode_ = UI_MODE_CALIBRATION_C3; } void Ui::CalibrateC3() { if (cv_scaler_->CalibrateC3()) { settings_->Save(); mode_ = UI_MODE_NORMAL; } else { mode_ = UI_MODE_CALIBRATION_ERROR; } } void Ui::StartNormalizationCalibration() { cv_scaler_->StartNormalizationCalibration(); mode_ = UI_MODE_CALIBRATION_LOW; } void Ui::CalibrateLow() { cv_scaler_->CalibrateLow(); mode_ = UI_MODE_CALIBRATION_HIGH; } void Ui::CalibrateHigh() { if (cv_scaler_->CalibrateHigh()) { settings_->Save(); mode_ = UI_MODE_NORMAL; } else { mode_ = UI_MODE_CALIBRATION_ERROR; } } void Ui::DoEvents() { while (queue_.available()) { Event e = queue_.PullEvent(); if (e.control_type == CONTROL_SWITCH) { if (e.data == 0) { OnSwitchPressed(e); } else { OnSwitchReleased(e); } } } if (mode_ == UI_MODE_EASTER_EGG_DANCE || mode_ == UI_MODE_CALIBRATION_ERROR) { if (queue_.idle_time() > 6000) { mode_ = UI_MODE_NORMAL; } } else { if (queue_.idle_time() > 1000) { queue_.Touch(); } } } uint8_t Ui::HandleFactoryTestingRequest(uint8_t command) { uint8_t argument = command & 0x1f; command = command >> 5; uint8_t reply = 0; switch (command) { case FACTORY_TESTING_READ_POT: case FACTORY_TESTING_READ_CV: reply = cv_scaler_->adc_value(argument); break; case FACTORY_TESTING_READ_NORMALIZATION: reply = cv_scaler_->normalization(argument); break; case FACTORY_TESTING_READ_GATE: return switches_.pressed(argument); break; case FACTORY_TESTING_SET_BYPASS: modulator_->set_bypass(argument); break; case FACTORY_TESTING_CALIBRATE: { switch (argument) { case 0: StartCalibration(); break; case 1: CalibrateC1(); break; case 2: CalibrateC3(); break; case 3: StartNormalizationCalibration(); break; case 4: CalibrateLow(); break; case 5: CalibrateHigh(); carrier_shape_ = 0; UpdateCarrierShape(); break; } } break; } return reply; } } // namespace warps
Report a bug