Files

copied
Last update 6 years 3 months by Olivier Gillet
Filestidesresources
..
__init__.py
lookup_tables.py
resources.py
waveforms.py
waves.bin
wavetables.py
waveforms.py
#!/usr/bin/python2.5 # # Copyright 2014 Olivier Gillet. # # Author: Olivier Gillet (ol.gillet@gmail.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Waveform definitions. import numpy waveforms = [] """---------------------------------------------------------------------------- Waveshaper for audio rate ----------------------------------------------------------------------------""" WAVESHAPER_SIZE = 1024 x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE) linear = x sin = (1.0 - numpy.cos(numpy.pi * x)) / 2.0 tan = numpy.arctan(8 * numpy.cos(numpy.pi * x)) scale = tan.max() tan = (1.0 - tan / scale) / 2.0 inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi inverse_tan = numpy.arccos(numpy.tan(scale * (1.0 - 2.0 * x)) / 8.0) / numpy.pi def audio_rate_flip(x): x = numpy.array(list(-x[WAVESHAPER_SIZE:0:-1]) + list(x)) return numpy.round((x * 32767.0)).astype(int) audio_rate_tables = [] audio_rate_tables.append(('inverse_tan_audio', audio_rate_flip(inverse_tan))) audio_rate_tables.append(('inverse_sin_audio', audio_rate_flip(inverse_sin))) audio_rate_tables.append(('linear_audio', audio_rate_flip(linear))) audio_rate_tables.append(('sin_audio', audio_rate_flip(sin))) audio_rate_tables.append(('tan_audio', audio_rate_flip(tan))) waveforms.extend(audio_rate_tables) """---------------------------------------------------------------------------- Waveshaper for control rate ----------------------------------------------------------------------------""" WAVESHAPER_SIZE = 1024 x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE) linear = x sin = (1.0 - numpy.cos(numpy.pi * x)) / 2.0 inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi expo = 1.0 - numpy.exp(-3 * x) expo_max = expo.max() expo /= expo_max expo_flipped = (1.0 - numpy.exp(-3 * (1 - x))) / expo_max log = numpy.log(1.0 - x * expo_max) / -3.0 log_flipped = numpy.log(1.0 - (1 - x) * expo_max) / -3.0 def control_rate_flip(x, y): x = numpy.array(list(x) + list(y[1:])) return numpy.round((x * 32767.0)).astype(int) control_rate_tables = [] control_rate_tables.append( ('reversed_control', control_rate_flip(log, 1.0 - log))) control_rate_tables.append( ('spiky_exp_control', control_rate_flip(log, log_flipped))) control_rate_tables.append( ('spiky_control', control_rate_flip(inverse_sin, 1.0 - inverse_sin))) control_rate_tables.append( ('linear_control', control_rate_flip(linear, 1.0 - linear))) control_rate_tables.append( ('bump_control', control_rate_flip(sin, 1.0 - sin))) control_rate_tables.append( ('bump_exp_control', control_rate_flip(expo, expo_flipped))) control_rate_tables.append( ('normal_control', control_rate_flip(expo, 1.0 - expo))) waveforms.extend(control_rate_tables) """---------------------------------------------------------------------------- Post waveshaper ----------------------------------------------------------------------------""" x = numpy.arange(0, WAVESHAPER_SIZE + 1) / (WAVESHAPER_SIZE / 2.0) - 1.0 x[-1] = x[-2] sine = numpy.sin(8 * numpy.pi * x) window = numpy.exp(-x * x * 4) ** 2 bipolar_fold = sine * window + numpy.arctan(3 * x) * (1 - window) bipolar_fold /= numpy.abs(bipolar_fold).max() waveforms.append(('bipolar_fold', numpy.round(32767 * bipolar_fold))) x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE) x[-1] = x[-2] sine = numpy.sin(8 * numpy.pi * x) window = numpy.exp(-x * x * 4) ** 2 unipolar_fold = (0.5 * sine + 2 * x) * window + numpy.arctan(4 * x) * (1 - window) unipolar_fold /= numpy.abs(unipolar_fold).max() waveforms.append(('unipolar_fold', numpy.round(32767 * unipolar_fold)))
Report a bug