Files

copied
Last update 6 years 3 months by Olivier Gillet
Filesstreamsresources
..
__init__.py
lookup_tables.py
resources.py
waveforms.py
lookup_tables.py
#!/usr/bin/python2.5 # # Copyright 2014 Olivier Gillet. # # Author: Olivier Gillet (ol.gillet@gmail.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Lookup table definitions. import numpy """---------------------------------------------------------------------------- LFO and envelope increments. ----------------------------------------------------------------------------""" lookup_tables = [] lookup_tables_32 = [] sample_rate = 31089 excursion = 1 << 32 num_values = 257 # Create lookup table for envelope times (x^0.25). max_time = 12.0 # seconds min_time = 0.0005 gamma = 0.25 min_increment = excursion / (max_time * sample_rate) max_increment = excursion / (min_time * sample_rate) rates = numpy.linspace(numpy.power(max_increment, -gamma), numpy.power(min_increment, -gamma), num_values) values = numpy.power(rates, -1/gamma).astype(int) lookup_tables_32.append( ('env_increments', values) ) """---------------------------------------------------------------------------- Envelope curves -----------------------------------------------------------------------------""" env_linear = numpy.arange(0, 257.0) / 256.0 env_linear[-1] = env_linear[-2] env_quartic = env_linear ** 3.32 env_expo = 1.0 - numpy.exp(-4 * env_linear) lookup_tables.append(('env_linear', env_linear / env_linear.max() * 65535.0)) lookup_tables.append(('env_expo', env_expo / env_expo.max() * 65535.0)) lookup_tables.append(('env_quartic', env_quartic / env_quartic.max() * 65535.0)) lookup_tables.append(('square_root', (env_linear ** 0.5) * 65535.0)) """---------------------------------------------------------------------------- SVF coefficients ----------------------------------------------------------------------------""" cutoff = 440.0 * 2 ** ((numpy.arange(0, 257) - 69) / 12.0) f = cutoff / sample_rate f[f > 1 / 8.0] = 1 / 8.0 f = 2 * numpy.sin(numpy.pi * f) resonance = numpy.arange(0, 257) / 257.0 damp = numpy.minimum(2 * (1 - resonance ** 0.25), numpy.minimum(2, 2 / f - f * 0.5)) lookup_tables.append( ('svf_cutoff', f * 32767.0) ) lookup_tables.append( ('svf_damp', damp * 32767.0) ) """---------------------------------------------------------------------------- Vactrol attack/decay time ----------------------------------------------------------------------------""" vactrol_time = 0.001 * 10 ** (numpy.arange(0, 128 * 5) / 128.0) vactrol_time[0] = 0.0001 vactrol_time[1] = 0.0002 vactrol_time[2] = 0.0005 vactrol_time[3] = 0.001 filter_coefficients = 1.0 - numpy.exp(-1 / (vactrol_time * sample_rate)) lookup_tables_32.append( ('lp_coefficients', excursion / 2 * filter_coefficients) ) """---------------------------------------------------------------------------- 2164 gain ----------------------------------------------------------------------------""" gains = (numpy.arange(0, 257) / 256.0) * 3.3 gains =10 ** (-1.5 * gains) lookup_tables.append( ('2164_gain', gains * 32767.0) ) """---------------------------------------------------------------------------- Compressor tables ----------------------------------------------------------------------------""" t = (numpy.arange(0, 257) / 256.0) lookup_tables_32 += [ ('exp2', 65536.0 * 2 ** t), ('log2', 65536.0 * numpy.log2(256 + 256 * t))] lookup_tables += [ ('compressor_ratio', 256 / (24 * t * t + 1)), ('soft_knee', (t ** 3.0) * 65535.0) ] """---------------------------------------------------------------------------- Rate control ----------------------------------------------------------------------------""" t = numpy.arange(0, 257) / 256.0 t /= (20 / 100.0 / 3.3) f = 2.0 ** t f /= f[-1] f *= 0.02 * (1 << 24) lookup_tables_32.append(('lorenz_rate', f))
Report a bug