
 TB3215
 Getting Started with SPI

Introduction

Author: Alin Stoicescu, Microchip Technology Inc.

This document provides information about Serial Peripheral Interface (SPI) on megaAVR® 0-series and
tinyAVR® 0- and 1-series, and intends to familiarize the user with AVR microcontrollers. The document
describes the application area, the modes of operation, and the hardware and software requirements of
the SPI.

Throughout the document, the configuration of the peripheral will be described in details, starting with the
location of the SPI pins, the direction of the pins, how to initialize the device as a master or a slave and
how to exchange data inside the system. This document covers the following use cases:

• Sending Data as a Master SPI Device:
The device will be configured as a master, will control the slave, and will send data using a method
called polling.

• Receiving Data as a Slave SPI Device:
The device will be configured as a slave and will wait for the incoming data. The data reception will
be triggered by interrupts.

• Changing Data Transfer Type:
The device will be configured as a master and will send data with respect to the clock polarity and the
clock phase.

Note:  The code examples were developed on ATmega4809 Xplained Pro (ATMEGA4809-XPRO).

© 2018 Microchip Technology Inc. DS90003215A-page 1

Table of Contents

Introduction..1

1. Relevant Devices...3
1.1. tinyAVR® 0-series... 3
1.2. tinyAVR® 1-series... 3
1.3. megaAVR® 0-series..4

2. Overview..5

3. Sending Data as a Master SPI Device.. 7

4. Receiving Data as a Slave SPI Device..11

5. Changing Data Transfer Type..14

6. References.. 16

7. Appendix..17

The Microchip Web Site.. 20

Customer Change Notification Service..20

Customer Support... 20

Microchip Devices Code Protection Feature... 20

Legal Notice...21

Trademarks... 21

Quality Management System Certified by DNV...22

Worldwide Sales and Service..23

 TB3215

© 2018 Microchip Technology Inc. DS90003215A-page 2

1. Relevant Devices
This chapter lists the relevant devices for this document.

1.1 tinyAVR® 0-series
The figure below shows the tinyAVR 0-series, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin- and feature
compatible.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-1. tinyAVR® 0-series Overview

8 14 20 24
Pins

Flash

ATtiny1607

ATtiny807

ATtiny1606

ATtiny806

ATtiny1604

ATtiny804

ATtiny402

ATtiny202

ATtiny404

ATtiny204

ATtiny406

32 KB

16 KB

8 KB

4 KB

2 KB

devices ATtiny~~

ATtiny~~Legend:

common data sheet

Devices with different Flash memory size typically also have different SRAM and EEPROM.

1.2 tinyAVR® 1-series
The following figure shows the tinyAVR 1-series devices, laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin compatible
and provide the same or more features. Downward migration may require code modification due to
fewer available instances of some peripherals.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

 TB3215
Relevant Devices

© 2018 Microchip Technology Inc. DS90003215A-page 3

Figure 1-2. tinyAVR® 1-series Overview

48 KB

32 KB

16 KB

8 KB

4 KB

2 KB

8 14 20 24
Pins

Flash

ATtiny816 ATtiny817ATtiny814

ATtiny417

ATtiny1616 ATtiny1617

ATtiny414 ATtiny416ATtiny412

ATtiny214ATtiny212

ATtiny1614

ATtiny3216 ATtiny3217

devices
ATtiny~~

ATtiny~~
Legend:

common data sheet

Devices with different Flash memory size typically also have different SRAM and EEPROM.

1.3 megaAVR® 0-series
The figure below shows the megaAVR 0-series devices, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin and feature
compatible.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-3. megaAVR® 0-series Overview

48 KB

32 KB

16 KB

8 KB

28/32 48
Pins

Flash

ATmega3208

ATmega4808

ATmega3209

ATmega4809

ATmega808

ATmega1608 ATmega1609

ATmega809

Devices with different Flash memory size typically also have different SRAM and EEPROM.

 TB3215
Relevant Devices

© 2018 Microchip Technology Inc. DS90003215A-page 4

2. Overview
The SPI bus is a synchronous serial communication interface based on four types of logic signals:

• SCK: Serial Clock (output from master)
• MOSI: Master Output Slave Input (data output from master)
• MISO: Master Input Slave Output (data output from slave)
• SS: Slave Select (active-low, output from master)

This peripheral is used for short distance and high-speed communication, primarily in embedded
systems. The SPI devices communicate in Full-Duplex mode, using a channel for transmitting and one for
receiving data. The SPI is based on a master-slave architecture with a single master at a time and one or
more slaves. The master device is the only one that can generate a clock, thus it is the initiator of the
data exchange. The SPI master device uses the same SCK, MOSI and MISO channels for all the slaves,
but usually individual lines of SS for each of the slaves. The master device selects the desired slave by
pulling the SS signal low.

The data to be sent will be stored in either a data register or, if a transmission is already in progress and
the Buffer mode was activated, in a buffer register. The data are sent out serially on the MOSI channel,
using a shift register, and every bit is being synchronized using the SPI clock generator. While every bit is
shifted out, new data are received on the MISO channel from the slave and are shifted in a receiver buffer
and further in the receive DATA register. If the receiver is busy, meaning there are already data in the
receive DATA register and the Buffer mode was activated, the data will be temporarily stored in a second
receiver buffer. The Buffer mode is activated by setting high the BUFEN bit of the CTRLB register.

Figure 2-1. SPI Block Diagram

8-bit Shift Register

MSb

Transmit Data Register
(DATA)

Receive Data Register
(DATA)

MOSI

MISO

SCK

SS

SLAVE

8-bit Shift Register

MSb

MOSI

MISO

SCK

SS

MASTER

SPI CLOCK
GENERATOR

Transmit Buffer
Register

Receive Buffer
Register

Transmit Data Register
(DATA)

Transmit Buffer
Register

Receive Data Register
(DATA)

Second Receive Buffer
Register

First Receive Buffer
Register

First Receive Buffer
Register

LSb

LSb

The SPI module has five registers. One register is used for data transfer and storage, two registers are
used for Interrupt flags, and the other two registers (CTRLA and CTRLB) are for initializations. All the
configurations required to make the peripheral work correctly are reduced to changing some bits in the
CTRLA register, while the CTRLB register is focused on different modes of operation that are optional.

 TB3215
Overview

© 2018 Microchip Technology Inc. DS90003215A-page 5

More details regarding the registers can be found in the family data sheet of the device, on the register
summary of the peripheral section.

Figure 2-2. Register Summary - SPIn

Offset Name Bit Pos.

0x00 CTRLA 7:0 DORD MASTER CLK2X PRESC[1:0] ENABLE

0x01 CTRLB 7:0 BUFEN BUFWR SSD MODE[1:0]

0x02 INTCTRL 7:0 RXCIE TXCIE DREIE SSIE IE

0x03 INTFLAGS 7:0 IF WRCOL

0x03 INTFLAGS 7:0 RXCIF TXCIF DREIF SSIF BUFOVF

0x04 DATA 7:0 DATA[7:0]

 TB3215
Overview

© 2018 Microchip Technology Inc. DS90003215A-page 6

3. Sending Data as a Master SPI Device
The master is the device that decides when to trigger communication and which slave is the recipient of
the message. SPI master devices are generally used in high-speed communication and the focus is to
exchange data with other devices acting as slaves (e.g. sensors, memories or other MCUs).

This use case follows the steps:

• Configure the location of the SPI pins
• Initialize the peripheral
• Configure the direction of the pins
• Control slave devices
• Send data as a master device

How to Configure the Location of the SPI Pins
The way to configure the location of the pins is independent of the application purpose and the SPI mode.
Each microcontroller has its own default physical pin position for peripherals. These locations can be
found on PORTMUX peripheral chapter from the family data sheet of the megaAVR 0-series. For
ATmega4809, the SPI pins are located on PA[7:4] and can be changed on PC[3:0] or PE[3:0] using the
TWISPIROUTEA register of the PORTMUX module.

Figure 3-1. TWISPIROUTEA Register

Bit 7 6 5 4 3 2 1 0

TWI0[1:0] SPI0[1:0]

Access R/W R/W R/W R/W

Reset 0 0 0 0

The order of the pins is the following: MOSI, MISO, SCK, SS; MOSI representing the lowest pin number
from the group. This is how a user can change the location of the SPI pins for option 1 with port C:

Value Name Description

0x0 DEFAULT SPI on PA[7:4]

0x1 ALT1 SPI on PC[3:0]

0x2 ALT2 SPI on PE[3:0]

0x3 NONE Not connected to any pins

This translates into the following code:

PORTMUX.TWISPIROUTEA |= PORTMUX_SPI00_bm;

Or option 2 with port E:

 TB3215
Sending Data as a Master SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 7

Value Name Description

0x0 DEFAULT SPI on PA[7:4]

0x1 ALT1 SPI on PC[3:0]

0x2 ALT2 SPI on PE[3:0]

0x3 NONE Not connected to any pins

This translates into the following code:

PORTMUX.TWISPIROUTEA |= PORTMUX_SPI01_bm;

How to Initialize the Peripheral
The clock frequency is derived from the main clock of the microcontroller and is reduced using a
prescaler or divider circuit present in the SPI hardware. By default, the source of the main clock is a 20
MHz internal oscillator, which is divided by a prescaler whose default value is 6. Thus, resulting in a main
clock frequency of approximately 3.33 MHz. More information about the clock can be found in Clock
Controller chapter of the family data sheet of the megaAVR 0-series.

The clock frequency of the SPI can also be increased using the Double Clock mode, which works only in
Master mode. The Data Order bit represents the endianness (Most Significant bit or Least Significant bit)
of the data, the order in which the bits are transmitted on the channel (starting with the last or the first bit
from a register). All the configurations are related to CTRLA register.

Figure 3-2. CTRLA Register
Bit 7 6 5 4 3 2 1 0

DORD MASTER CLK2X PRESC[1:0] ENABLE

Access R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0

Next is an example on how to configure a master SPI device with the default main clock source and with
the default pin location presented in the previous topic. A 416 kHz frequency will result by configuring the
device in Double-Speed mode and with a 16 times divider. The data will be shifted out starting with the
Most Significant bit (MSb):

Value Name Description

0x0 DIV4 CLK_PER/4

0x1 DIV16 CLK_PER/16

0x2 DIV64 CLK_PER/64

0x3 DIV128 CLK_PER/128

This translates into the following code:

SPI0.CTRLA = SPI_CLK2X_bm
 | SPI_DORD_bm
 | SPI_ENABLE_bm
 | SPI_MASTER_bm
 | SPI_PRESC_DIV16_gc;

 TB3215
Sending Data as a Master SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 8

How to Configure the Direction of the Pins
Since the master devices control and initiate transmissions, the MOSI, SCK and SS pins must be
configured as output, while the MISO channel will keep its default direction as input. The default values,
directions and configurations explained above are still applicable here. The following example is based on
the default position of the SPI pins:

PORTA.DIR |= PIN4_bm; // MOSI channel
PORTA.DIR &= ~PIN5_bm; // MISO channel
PORTA.DIR |= PIN6_bm; // SCK channel
PORTA.DIR |= PIN7_bm; // SS channel

An SPI master device can control more than one slave, thus requiring more SS pins. The additional SS
channels can be configured just like the one in the example above. The user must choose an unused pin
and configure its direction as output.

How to Control Slave Devices
A master will control a slave by pulling low the SS pin. If the slave has set the direction of the MISO pin to
output, when the SS pin is low, the SPI driver of the slave will take control of the MISO pin, shifting data
out from its transmit DATA register. All slave devices can receive a message, but only those with SS pin
pulled low can send data back. Though, it is not recommended to enable more than one slave in a typical
connection (like the one below) because all of them will try to respond to the message and there is only
one MISO channel, thus the transmission will result in a write collision. The user can check the
appearance of collisions by reading the value of WRCOL bit in INTFLAGS register.

Figure 3-3. Typical SPI Bus

SCK

SCK

MOSI

SPI
Master

SCK
MOSI
MISO

SS1
SS2
SS3

MOSI

MISO

SS

SCK

MOSI

MISO

MISO

SS

SS

SPI
Slave

Slave
SPI

SPI
Slave

 TB3215
Sending Data as a Master SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 9

How to Send Data as a Master Device
All the settings configured before are considered in the following example and the polling method is used
for flag checking. Before sending data, the user must pull low an SS signal to let the slave device know it
is the recipient of the message.

PORTA.OUT &= ~PIN7_bm;

Once the user writes new data into the DATA register the hardware starts a new transfer, generating the
clock on the line and shifting out the bits.

Figure 3-4. DATA Register

SPI0.DATA = data;

When the hardware finishes shifting all the bits, it activates a receive Interrupt flag, which can be found in
the INTFLAGS register.

Figure 3-5. INTFLAGS Register

Bit 7 6 5 4 3 2 1 0

IF WRCOL

Access R/W R/W

Reset 0 0

The user must check the state of the flag, before writing new data in the register, by either activating the
interrupts or by constantly reading the value of the flag (method called polling), else a write collision
interrupt will occur.

while (!(SPI0.INTFLAGS & SPI_IF_bm))
{
 ;
}

The user can pull the SS channel high if there is nothing left to transmit.

PORTA.OUT |= PIN7_bm;

Full Code Example

Tip:  The full code example is also available in the Appendix section.

 TB3215
Sending Data as a Master SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 10

https://github.com/MicrochipTech/TB3215_Getting_Started_with_SPI

4. Receiving Data as a Slave SPI Device
The slave devices are usually actuators. Slaves do no initiate any action, they only act whenever the
master initiates. A slave must be always available and has to wait until the master pulls low its SS
channel.

This use case follows the steps:

• Initialize the peripheral
• SPI slave direction pin configuration
• Receive data as a slave SPI

How to Initialize the Peripheral
The slave gets its clock signal from the master device so there is no point changing the clock divider of
the peripheral, a change that has no effect in SPI Slave mode. Though, the hardware peripheral has to
sample the data received on the MOSI channel. For the data signal to be correctly reconstructed, the
main clock frequency of the device must be at least double the clock received on the SPI SCK channel.

If the slave device is a microcontroller, the user has to take the frequency request into consideration and
configure a powerful clock source. If the user does not have access to the clock generator of the slave, it
has to make sure the master does not exceed the limitations of the slave. A master is part of the same
system or application and is mainly represented by a microcontroller whose frequency can be easily
changed, either SPI frequency or main clock frequency.

To make the example easier to understand, some of the information presented in the Sending Data as a
Master SPI Device section is also applied here. The device is configured as a slave, with a main clock of
3.33 MHz, and the data are shifted out starting with the MSb. Configuring the device as a slave resumes
mainly to enabling the module and deactivating the Master bit from the CTRLA register:

Figure 4-1. CTRLA register
Bit 7 6 5 4 3 2 1 0

DORD MASTER CLK2X PRESC[1:0] ENABLE

Access R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0

SPI0.CTRLA = SPI_DORD_bm
 | SPI_ENABLE_bm
 & (~SPI_MASTER_bm);

SPI Slave Direction Pin Configuration
When the device is in SPI Slave mode, the MOSI, SCK and SS pins require to be configured as input
channels. By default, all Input/Output (I/O) pins are configured as input, so there is nothing that needs to
be modified for these pins. Thus, the hardware circuit of the SPI will take control of these channels during
a transmission if the peripheral is enabled. Since it is not mandatory to send data back, the MISO channel
can be configured either as output or input.

The normal mode is to configure the pin as output, and the hardware circuit will control its behavior during
data exchanges. If the pin is configured as input, it will act as an ordinary I/O pin and will not be used by
the SPI.

 TB3215
Receiving Data as a Slave SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 11

When the pin value of the DIR register has the value 0, the pin acts as input digital pin, respective output
digital pin for value 1. The default location of the SPI pins will be considered. To be sure that the default
direction value of the pins was not changed, all the required pins will be configured as follows:

PORTA.DIR &= ~PIN4_bm; // MOSI channel
PORTA.DIR |= PIN5_bm; // MISO channel
PORTA.DIR &= ~PIN6_bm; // SCK channel
PORTA.DIR &= ~PIN7_bm; // SS channel

How to Receive Data as a Slave SPI
All the slave devices connected to the SPI bus will receive the message sent on the MOSI channel by the
master device. A slave cannot respond to a message unless the SS channel is pulled low. When the
master device pulls the SS pin low, the SPI peripheral of the slave device will take control of the MISO pin
and will shift data out. If the user does not write into the DATA register, the slave will not send data out
and the peripheral will shift out a byte full of zeros.

The peripheral will signal the reception of new data by activating the IF flag of the INTFLAGS register.
The user has to check the value of the bit, either by polling method as presented in the master example
or by interrupts. The following example uses interrupts to establish the value of the bit since there is no
way telling when the master will send new data, and interrupts are non-blocking, the device being able to
do whatever it has to do during idle SPI time.

When using interrupts, there are three important things that must be taken into consideration:

1. Activating the interrupts for the microcontroller. The macro can be used by including the <avr/
interrupt.h> file:
sei();

2. Activating the interrupts for the peripheral can be done by activating the IE flag from the INTCTRL
register:
Figure 4-2. INTCTRL Register

Bit 7 6 5 4 3 2 1 0

RXCIE TXCIE DREIE SSIE IE

Access R/W R/W R/W R/W R/W

Reset 0 0 0 0 0

SPI0.INTCTRL = SPI_IE_bm;

3. Clearing the Interrupt flag, if it is not cleared automatically by the hardware. After receiving new
data, the receive complete Interrupt flag will be activated. This one can be found in INTFLAGS
register.
Figure 4-3. INTFLAGS Register

Bit 7 6 5 4 3 2 1 0

IF WRCOL

Access R/W R/W

Reset 0 0

Clearing the Interrupt flag is done by writing ‘1’ to the bit inside the interrupt function, where the user may
also insert its interrupt routine based on its application purpose.

 TB3215
Receiving Data as a Slave SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 12

In the example below, it is shown how to read the received data, clear the interrupt and write to the DATA
register (it is the user’s choice what to do with the received data and what to write back to the master).

ISR(SPI0_INT_vect)
{
 receiveData = SPI0.DATA;

 SPI0.DATA = writeData;

 SPI0.INTFLAGS = SPI_IF_bm;
}

Full Code Example

Tip:  The full code example is also available in the Appendix section.

 TB3215
Receiving Data as a Slave SPI Device

© 2018 Microchip Technology Inc. DS90003215A-page 13

https://github.com/MicrochipTech/TB3215_Getting_Started_with_SPI

5. Changing Data Transfer Type
It represents the way in which data is transmitted with respect to the clock generation. The clock polarity
and the clock phase are the ones important for data modes. By clock polarity, one can understand the
level of the signal which can be low while in Idle state and will start with a rising edge when transmitting
data, or it can be high while in Idle state and will start with a falling when exchanging data. Depending on
the phase, the data are generated or sampled with respect to the clock on the channel: on a rising or a
falling edge. See figure:

Figure 5-1. SPI Data Transfer Modes
SP

I M
od

e
3

SP
I M

od
e

2
SP

I M
od

e
1

SP
I M

od
e

0

Cycle #

SS

SCK

sampling

MISO

MOSI

Cycle #

SS

SCK

sampling

MISO

MOSI

Cycle #

SS

SCK

sampling

MISO

MOSI

Cycle #

SS

SCK

sampling

MISO

MOSI

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Both the master and the slave devices must be configured in the same way, so one can decode correctly
what the other encoded. Data modes can be selected by changing the value of MODE[1:0] bit field from
CTRLB register.

Figure 5-2. CTRLB Register

Bit 7 6 5 4 3 2 1 0

BUFEN BUFWR SSD MODE[1:0]

Access R/W R/W R/W R/W R/W

Reset 0 0 0 0 0

Until now, the examples were based on SPI Mode 0 because there was no change made to these bits
and that is the default value of the bits.

 TB3215
Changing Data Transfer Type

© 2018 Microchip Technology Inc. DS90003215A-page 14

Here is an example of how to configure the SPI in Data Mode 3, and is based on the normal/basic master
SPI Initialization mode presented in the Sending Data as a Master SPI Device section, the only difference
being the change of the data transmission type:

SPI0.CTRLB |= SPI_MODE_3_gc;

Value Name Description

0x0 0
Leading edge: Rising, sample
Trailing edge: Falling, setup

0x1 1
Leading edge: Rising, setup

Trailing edge: Falling, sample

0x2 2
Leading edge: Falling, sample

Trailing edge: Rising, setup

0x3 3
Leading edge: Falling, setup
Trailing edge: Rising, sample

Full Code Example

Tip:  The full code example is also available in the Appendix section.

 TB3215
Changing Data Transfer Type

© 2018 Microchip Technology Inc. DS90003215A-page 15

https://github.com/MicrochipTech/TB3215_Getting_Started_with_SPI

6. References
1. ATmega4809 web page: https://www.microchip.com/wwwproducts/en/ATMEGA4809
2. ATmega3208/3209/4808/4809 family data sheet.
3. ATmega4809 Xplained Pro web page: https://www.microchip.com/developmenttools/

ProductDetails/atmega4809-xpro.

 TB3215
References

© 2018 Microchip Technology Inc. DS90003215A-page 16

https://www.microchip.com/wwwproducts/en/ATMEGA4809
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro

7. Appendix
Example 7-1. Sending Data as a Master SPI Device Full Code Example

#include <avr/io.h>

void SPI0_init(void);
void slaveSelect(void);
void slaveDeselect(void);
uint8_t SPI0_exchangeData(uint8_t data);

void SPI0_init(void)
{
 PORTA.DIR |= PIN4_bm; /* Set MOSI pin direction to output */
 PORTA.DIR &= ~PIN5_bm; /* Set MISO pin direction to input */
 PORTA.DIR |= PIN6_bm; /* Set SCK pin direction to output */
 PORTA.DIR |= PIN7_bm; /* Set SS pin direction to output */

 SPI0.CTRLA = SPI_CLK2X_bm /* Enable double-speed */
 | SPI_DORD_bm /* LSB is transmitted first */
 | SPI_ENABLE_bm /* Enable module */
 | SPI_MASTER_bm /* SPI module in Master mode */
 | SPI_PRESC_DIV16_gc; /* System Clock divided by 16 */
}

uint8_t SPI0_exchangeData(uint8_t data)
{
 SPI0.DATA = data;

 while (!(SPI0.INTFLAGS & SPI_IF_bm)) /* waits until data is exchanged*/
 {
 ;
 }

 return SPI0.DATA;
}

void slaveSelect(void)
{
 PORTA.OUT &= ~PIN7_bm; // Set SS pin value to LOW
}

void slaveDeselect(void)
{
 PORTA.OUT |= PIN7_bm; // Set SS pin value to HIGH
}

int main(void)
{
 uint8_t data = 0;

 SPI0_init();

 while (1)
 {
 slaveSelect();
 SPI0_exchangeData(data);
 slaveDeselect();
 }
}

Example 7-2. Receiving Data as a Slave SPI Device Full Code Example

#include <avr/io.h>
#include <avr/interrupt.h>

void SPI0_init(void);

volatile uint8_t receiveData = 0;

 TB3215
Appendix

© 2018 Microchip Technology Inc. DS90003215A-page 17

volatile uint8_t writeData = 0;

void SPI0_init(void)
{
 PORTA.DIR &= ~PIN4_bm; /* Set MOSI pin direction to input */
 PORTA.DIR |= PIN5_bm; /* Set MISO pin direction to output */
 PORTA.DIR &= ~PIN6_bm; /* Set SCK pin direction to input */
 PORTA.DIR &= ~PIN7_bm; /* Set SS pin direction to input */

 SPI0.CTRLA = SPI_DORD_bm /* LSB is transmitted first */
 | SPI_ENABLE_bm /* Enable module */
 & (~SPI_MASTER_bm); /* SPI module in Slave mode */

 SPI0.INTCTRL = SPI_IE_bm; /* SPI Interrupt enable */
}

ISR(SPI0_INT_vect)
{
 receiveData = SPI0.DATA;

 SPI0.DATA = writeData;

 SPI0.INTFLAGS = SPI_IF_bm; /* Clear the Interrupt flag by writing 1 */
}

int main(void)
{
 SPI0_init();

 sei(); /* Enable Global Interrupts */

 while (1)
 {
 ;
 }
}

Example 7-3. Changing Data Type Full Code Example

#include <avr/io.h>

void SPI0_init(void);
void slaveSelect(void);
void slaveDeselect(void);
uint8_t SPI0_exchangeData(uint8_t data);

void SPI0_init(void)
{
 PORTA.DIR |= PIN4_bm; /* Set MOSI pin direction to output */
 PORTA.DIR &= ~PIN5_bm; /* Set MISO pin direction to input */
 PORTA.DIR |= PIN6_bm; /* Set SCK pin direction to output */
 PORTA.DIR |= PIN7_bm; /* Set SS pin direction to output */

 SPI0.CTRLA = SPI_CLK2X_bm /* Enable double-speed */
 | SPI_DORD_bm /* LSB is transmitted first */
 | SPI_ENABLE_bm /* Enable module */
 | SPI_MASTER_bm /* SPI module in Master mode */
 | SPI_PRESC_DIV16_gc; /* System Clock divided by 16 */

 SPI0.CTRLB |= SPI_MODE_3_gc; /* Data Mode 3 */
}

uint8_t SPI0_exchangeData(uint8_t data)
{
 SPI0.DATA = data;

 while (!(SPI0.INTFLAGS & SPI_IF_bm)) /* waits until data is exchanged*/
 {
 ;
 }

 return SPI0.DATA;
}

 TB3215
Appendix

© 2018 Microchip Technology Inc. DS90003215A-page 18

void slaveSelect(void)
{
 PORTA.OUT &= ~PIN7_bm; // Set SS pin value to LOW
}

void slaveDeselect(void)
{
 PORTA.OUT |= PIN7_bm; // Set SS pin value to HIGH
}

int main(void)
{
 uint8_t data = 0;

 SPI0_init();

 while (1)
 {
 slaveSelect();
 SPI0_exchangeData(data);
 slaveDeselect();
 }
}

 TB3215
Appendix

© 2018 Microchip Technology Inc. DS90003215A-page 19

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online
discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 TB3215

© 2018 Microchip Technology Inc. DS90003215A-page 20

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 TB3215

© 2018 Microchip Technology Inc. DS90003215A-page 21

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3993-6

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 TB3215

© 2018 Microchip Technology Inc. DS90003215A-page 22

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. DS90003215A-page 23

	Introduction
	Table of Contents
	1. Relevant Devices
	1.1. tinyAVR® 0-series
	1.2. tinyAVR® 1-series
	1.3. megaAVR® 0-series

	2. Overview
	3. Sending Data as a Master SPI Device
	4. Receiving Data as a Slave SPI Device
	5. Changing Data Transfer Type
	6. References
	7. Appendix
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

